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ABSTRACT

Modeling the Competitive Dynamic among Air-travel Itineraries with Generalized
Extreme Value Models

Gregory M. Coldren

This dissertation develops models that forecast air-travel itinerary passenger 

(market) shares between airport-pairs. This is the first study to model aviation demand at 

the itinerary level and air-carriers can use these models to assist their strategic decision

making. The motivation for developing these models is both to understand the impact of 

different air-carrier service attributes on itinerary share, and to understand the underlying 

competitive dynamic between itineraries.

Aggregate multinomial logit models with independent variables measuring air- 

carrier and itinerary service attributes such as level-of-service, connection quality, carrier 

attributes, aircraft size and type, and departure time are estimated. These model 

estimations describe the importance of these attributes on itinerary share. The results of 

these models are intuitive and offer new perspectives on the impacts of changing various 

service attributes on itinerary and carrier market share. Additionally, validation results 

from the implementation of these models by a major U.S. air-carrier are presented (the 

logit-based models improved the carrier’s forecasting accuracy compared to its previous 

QSI-based model).

These multinomial logit models cannot measure the underlying competitive 

dynamic (if any) between itineraries due to constraints inherent in the model derivation. 

This competition is hypothesized to be differentiated by proximity in departure time,
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carrier and/or level-of-service. This hypothesis is tested by estimation of incrementally 

more complex generalized extreme value models. Results indicate that inter-itinerary 

competition is indeed differentiated by proximity in departure time, by carrier, by carrier 

within departure time periods and (to a lesser extent) by level-of-service within departure 

time periods. The advanced models estimated (extending to multi-level generalized 

nested logit and ordered generalized extreme value models) are shown to outperform the 

more basic specifications with regard to statistical tests and behavioral interpretations. 

Additionally, these models offer clear insights into air-traveler behavior and capture the 

underlying competitive dynamic among air-travel itineraries.
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INTRODUCTION

The airline industry has experienced drastic changes over the last thirty years. 

Prior to the Airline Deregulation Act of 1978, a small set of airlines dominated the United 

States market. Entry by other carriers was essentially blocked. During this era, the Civil 

Aeronautics Board (CAB) was responsible for establishing prices and determining which 

airline(s) would provide service between each airport-pair. Additionally, the CAB tended 

to discourage airlines from competing with respect to onboard amenities. Nevertheless, 

the CAB did not control the schedules of the airlines. Airlines could determine their flight 

frequencies, the time of day these flights operated, and the type(s) of equipment used. 

Therefore, scheduling (including equipment assignment) was the primary mechanism for 

airline competition.

Deregulation was supposed to usher an era of competitiveness into the U.S. 

aviation industry. Ironically, during the first fifteen years of the deregulated era, the 

industry consolidated and the growth of hub-and-spoke networks accelerated. Economies 

of scale, aircraft technologies, the ability of carriers to insulate themselves from 

competition, and marketing opportunities are the most cited reasons for this phenomenon 

(De Vany and Garges 1972; Gordon and De Neufville 1973; Kanafani 1981; Kanafani 

and Ghobrial 1982; Kanafani and Ghobrial 1985).

Beginning in the early 1990’s and continuing through today, low-cost airlines

(many of which operate point-to-point service networks) have been aggressively

challenging the traditional network-based (legacy) carriers. These low-cost airlines have

ushered in an era of price competition and have steadily gained market share. Some

1
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traditional carriers have launched “low-cost” airlines of their own in response to this 

assault. Windle and Dresner (1995a) show low-cost carrier entry into a market 

significantly reduces prices and increases traffic for the market (the entry of legacy 

carriers usually has no significant effect on prices and traffic) and Dresner et al. (1996) 

show low-cost carrier entry on a route spurs lower prices and higher traffic on non

competing routes out of the airport of entry as well as competing routes from nearby 

airports1. Simultaneous with the rise of low-cost carriers, legacy carriers have had to deal 

with the decline of their “bread and butter” business travelers, labor strife, and an overall 

diminishing of demand due to geo-political concerns and a weak economy. Regardless of 

the fact that the landscape of the U.S. airline industry is changed in a variety of 

dimensions, it is still a vital element of the transportation system in particular, and the 

national economy in general, with the quality of air-carrier facilities and services 

affecting the accessibility and economic growth prospects of major geographic regions.

Though passenger demand for air-carrier services has fluctuated greatly in 

response to new technologies, evolving consumer preferences and macroeconomic 

changes, it remains the foundation of the aviation industry. Understanding this demand is 

crucial for air-carriers, government policy makers, airport operators, air-carrier suppliers 

and researchers.

Many studies of aviation demand forecast air-travel volumes for given levels of 

aggregation such as system (Brown and Watkins 1968; English and Keman 1976;

1 That is, if  low-cost airline XYZ were to enter the BWI -  Cleveland market, this would have price and 
traffic effects on the BWI -  Buffalo market, as well as the Washington National -  Cleveland and 
Washington Dulles -  Cleveland markets.
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Transportation Research Circular #348 1989), metropolitan region (Mumayiz and 

Pulling 1992), airport (Skinner 1976; Augustinus and Demakopoulos 1978; Harvey 1987; 

Ashford and Benchemam 1987; Furuichi and Koppelman 1994; Windle and Dresner 

1995b; Suzuki et al. 2003; Basar and Bhat 2004; Hess and Polak 2005) or airport (city) 

pair (Brown and Watkins 1968; Brown and Watkins 1971; Verleger 1972; De Vany and 

Garges 1972; Douglas and Miller 1974a; De Vany 1974; Kanafani and Fan 1974; De 

Vany 1975; Ippolito 1981; Anderson and Kraus 1981; Abrahams 1983; Reiss and Spiller 

1989; Dresner et al. 1996; Corsi et al. 1997).

Other studies allocate air-travel volumes to air-carriers at a given level of 

aggregation. These air-carrier allocation studies typically identify a relationship between 

airline service attributes and the allocation of air-travel volumes. Additionally, these 

studies estimate the relative importance of different carrier attributes {e.g. market 

presence, fare-levels, service quality) on demand share and quantify the tradeoffs that 

passengers make among these in their air-travel purchasing decisions. The most 

aggregate allocation studies explore methods of distributing system-wide airline demand 

to individual carriers (Nason 1981; Morash and Ozment 1996; Suzuki et al. 2001).

While predicting system-wide market shares is interesting, it does not give 

researchers or managers enough planning information or behavioral insight due to its lack 

of detail on the impact of carrier service attributes on demand in different markets. For 

example, a given carrier’s market share can vary greatly across airport-pairs due to its 

differing levels of market presence, fares and service quality in the different markets. 

Detailed market-level information about carrier service attributes is necessary if market-
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level forecasts are desired. Studies focusing on the allocation of airport-pair demand to 

individual carriers employ richer and more disaggregate data with respect to airport-pair 

airline-specific quality of service measures than the studies referenced in the preceding 

paragraph (Ghobrial and Soliman 1992; Nako 1992; Proussaloglou and Koppelman 

1995).

Airport-pair allocation studies have contributed to the understanding of the 

relationship between carriers’ airport-pair service attributes and their market share. 

However, even though some carrier airport-pair characteristics are important in 

determining demand share (e.g. overall presence in market), the service provided by a 

carrier in a market is typically not homogeneous. For a given day and airport-pair, a 

carrier can offer service varying by departure time, equipment type, number of stops, or 

any number of other attributes, each of which can have a profound effect on demand. 

Thus, it is not realistic to only use airport-pair characteristics in order to describe a 

carrier’s market share.

Some studies in the literature take a step in the right direction by modeling flight- 

level allocation using survey methodologies to gauge the tradeoffs that passengers make 

among flight attributes in their flight-choice behavior (Yoo and Ashford 1996; 

Proussaloglou and Koppelman 1999; Bruning and Rueda 2000; Algers and Beser 2001). 

However, even though these studies present richer data and more realistic air-passenger 

choice scenarios than the airport-pair carrier allocation studies, they are still inadequate 

due to the fact that they don’t systematically model all of the air-travel options available 

to travelers within a given airport-pair.
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All the above-mentioned carrier allocation studies fall into at least one of the 

following categories: 1) studies based on data with a high level of geographic 

aggregation, 2) studies employing surveys with a very limited range of airport-pairs or 3) 

studies based on stated preference data which may be subject to bias (Ben-Akiva et al. 

1989; Morrison 2000; Murphy et al. 2005). Additionally, a major limitation of these 

studies is their failure to model air-travel demand at the itinerary level. An itinerary, as 

used here, is a leg (flight number) or sequence of legs connecting a given airport-pair (a 

leg may be included in several itineraries linking a given airport-pair as well as being 

included in itineraries linking many different airport-pairs). Itineraries are either nonstop, 

direct (a connecting itinerary not involving an airplane change), single-connect (a 

connecting itinerary with an airplane change) or double-connect (an itinerary with two 

connections)2. For a given day, an airport-pair may be served by hundreds of itineraries, 

each of which offers passengers a potential way to travel between the airports.

Itineraries are the products that are ultimately purchased by passengers, and hence 

it is their characteristics that influence demand. In making their itinerary choices, 

travelers make tradeoffs among the characteristics that define each itinerary {e.g. 

departure time, equipment type(s), number of stops, route, carrier). Modeling these 

itinerary-level tradeoffs is essential to truly understanding air-travel demand.

Using comprehensive and official schedule and bookings data, this dissertation 

builds on a framework established by Coldren et al. (2003), Coldren and Koppelman 

(2005a) and Coldren and Koppelman (2005b), and focuses on the problem of allocating
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airport-pair demands to individual itineraries linking the airport-pairs. Because this is 

the first study to model itinerary-level demand, this dissertation provides the most 

comprehensive and thorough explanation of air-carrier demand to-date.

2 These four classifications are referred to as an itinerary’s “level-of-service” in this dissertation.
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CHAPTER 1: PRELIMINARY DISCUSSION

1.1 AIR-TRAVEL ITINERARY SHARE MODELS

As mentioned in the Introduction, it is essential to model the allocation of airport- 

pair demand at the itinerary level in order to truly understand passenger behavior and 

hence to accurately forecast passenger demand. Models that address this problem are 

referred to as air-travel itinerary share models3. Itinerary share models forecast the share 

of passengers expected to travel on each itinerary between any airport-pair. This is done 

by relating each itinerary’s value (quality) to the total value of all itineraries in its 

respective airport-pair. The value of an itinerary is usually modeled as a function of its 

service characteristics4 (independent variables) and their corresponding preference 

weights (parameter estimates). Though various air-carriers (and aviation consulting 

firms) own proprietary itinerary share models, no published study currently exists 

addressing the itinerary share problem except those developed in conjunction with this 

dissertation5.

Though itinerary share models vary with respect to the service characteristics that 

are included in their specifications, they all describe the impact that these service 

characteristics have on itinerary share. Additionally, advanced itinerary share models 

(like those presented in this dissertation) allow the underlying competitive dynamic, if 

any, among air-travel itineraries to be measured.

3 In the aviation industry, these models are also referred to as network-planning or network-simulation 
models.
4 Such as number o f stops, equipment type(s), departure time, elapsed time, fare, etc.
5 These are Coldren et al. (2003), Coldren and Koppelman (2005a) and Coldren and Koppelman (2005b).

7
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Once an itinerary share model is estimated, these shares (probabilities) can be 

applied to airport-pair volume forecasts obtained from a separate model6, allowing for 

itinerary-level passenger forecasts to be obtained. These itinerary-level forecasts can then 

be assigned to flight legs to obtain carrier market share at the flight-leg, airport-pair, 

region, system or any other level of aggregation.

When passenger forecasts from an itinerary share model are combined with fare 

and cost data, it becomes a powerful tool allowing an airline to evaluate its current 

schedule and network, as well as proposed network changes, alliance (merger) 

evaluations and “what-if ’ scheduling decisions (including modeling the potential actions 

of competitors) with respect to passengers, revenue and profitability. Thus, these models 

can be invaluable to a passenger airline’s tactical decision-making and strategic planning. 

Some common situations where these models aid carriers are: merger and acquisition 

scenarios, route schedule analysis, codeshare scenarios, equipment assignment scenarios, 

minimum connection time studies, price-elasticity studies, hub location studies, and 

equipment purchasing decisions.

Because itinerary share models guide critical decisions, it is paramount that they 

be as accurate as possible since, for a given carrier, improving the forecasting ability of 

its itinerary share model will translate to improvements in its revenue management, 

schedule efficiency and profitability.

6 Airport-pair demand forecasting is beyond the scope of this dissertation. However, these forecasts are 
relevant since the accuracy o f itinerary share forecasts depends on the accuracy of the total airport-pair 
forecast. See Chapter 2 for a review of studies concentrating on airport-pair (and city-pair) demand 
forecasting.
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1.2 QUALITY OF SERVICE INDEX ITINERARY SHARE MODELS

Most of the proprietary itinerary share models mentioned in Section 1.1 employ a 

demand allocation methodology referred to as quality of service index (QSI). QSI

itineraries in its airport-pair), where quality is defined as a function of various itinerary 

service attributes and their corresponding preference weights. For a given QSI model, 

these preference weights are obtained using statistical techniques and/or analyst intuition. 

Once the preference weights are obtained, the final itinerary quality of service index 

(QSI) for a given itinerary is usually expressed as a linear or multiplicative function of its

. . .  Sservice characteristics and preference weights . For itinerary i , its passenger share is then 

determined by:

QSL is the quality of service index for itinerary i and 
the summation is over all itineraries in the airport-pair.

QSI models are problematic on two fronts. First, a distinguishing characteristic of

these models is that their preference weights (or sometimes subsets of these weights) are

7 Information on QSI models obtained from TRB Transportation Research E-Circular E-C040 (2002) as 
well as the author’s personal experience with the models.
8 For example, suppose a given QSI model measures itinerary quality along four service characteristics (e.g. 
number o f stops, fare, carrier, equipment type) represented by independent variables X \  , X  2 , X i  , X-i 
and their corresponding preference weights /? i , (3i ,  /?3 , (3a . The QSI for itinerary i , QSL , can be

models7 relate an itinerary’s passenger share to its “quality” (and the quality of all other

O QSIi
( 1.1)

where Si is the passenger share assigned to itinerary i ,

expressed as QSL = (/hY i + [L2X 2 + fiiXz  + (LaX a} or

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

10

usually obtained independently from the other preference weights in the model. Thus,

QSI models do not capture interactions existing among itinerary service characteristics 

(e.g. elapsed itinerary trip time and equipment, elapsed itinerary trip time and number of 

stops). Second, QSI models are not able to measure the underlying competitive dynamic 

that may exist among air-travel itineraries. This second inadequacy in QSI models can be

seen by examining the cross-elasticity equation for the change in the share of itinerary J 

due to changes in the QSI of itinerary 2:

s =_asL 0 M = Si 
'  dQSL Sj

The expression on the right side of Equation (1.2) is not a function of j . That is, 

changing the QSI (quality) of itinerary i will affect the passenger share of all other 

itineraries in its airport-pair in the same proportion. This is not realistic since, for 

example, if  a given itinerary (linking a given airport-pair) that departs in the morning 

improves in quality, it is likely to attract more passengers away from the other morning 

itineraries than the afternoon or evening itineraries. Since QSI models are not able to 

capture the interactions between itinerary service characteristics or the underlying 

competitive dynamic among itineraries, these models are not adequate for modeling air- 

travel itinerary shares.

QSL = ( j 3 \ X $ X 4 }. Other functional forms for the calculation o f QSI’s are also 

possible.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

11

1.3 MOTIVATION FOR RESEARCH

Due to the critical importance of air-travel itinerary share models in guiding air- 

carrier strategy, the inadequacies of QSI-based models currently in use by some carriers, 

and the lack of itinerary share models in the literature, the research presented in this 

dissertation fills a gap in the airline forecasting literature by providing a framework for 

itinerary-level demand allocation modeling.

The itinerary share models developed in this dissertation use aggregate logit- 

based share techniques9. In these models, a value function, the aggregate analog of utility, 

represents the relative desirability of each itinerary connecting an airport-pair for each 

day of the week. In specifying these value functions, itinerary-level and carrier airport- 

pair service-characteristic variables are used to relate each itinerary with its airport-pair 

demand share.

The motivation for the research contained in this dissertation is twofold given that 

the overarching goal is to model itinerary shares: 1) to understand the impact of different 

air-carrier service attributes on itinerary share and 2) to understand the underlying 

competitive dynamic between itineraries.

1.4 CONTRIBUTIONS OF RESEARCH

The itinerary share models presented in this dissertation are state-of-the-art with 

respect to itinerary share accuracy, behavioral insights, and modeling flexibility.

9 Aggregate logit shares are used (despite the availability of individual itinerary-level booking information) 
as the data do not contain information about traveler or trip characteristics. This is discussed in more detail 
in Chapter 3.
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Specifically, the research presented herein contributes to the literature in three 

important ways.

First, this is the first study to systematically and comprehensively model aviation 

demand at the itinerary level. Second, unlike QSI-based itinerary share models, the logit- 

based models developed in this dissertation use advanced econometric techniques to 

simultaneously estimate parameters for the independent variables used in the model 

specifications. Explanatory variables used in this study such as level-of-service indicators 

differing by market type, connection quality variables, departure time variables, and 

equipment size and type variables have previously not been reported in the literature. Use 

of these variables yields valuable insights into air-traveler behavior. Additionally, 

implementation of the most basic itinerary share model presented in this dissertation by a 

major U.S. carrier yielded substantial improvements in the carrier’s forecasting accuracy 

compared with its previous QSI-based model10.

Third, generalized extreme value (GEV) (McFadden 1978) specifications are used 

to model the underlying competition among air-travel itineraries. These models provide 

flexibility in capturing inter-itinerary competition dynamics along a variety of 

dimensions. Most of these structures have never been used in the aviation demand 

literature and some are new to the logit share literature in general. Some of these models 

are likely to be applicable to areas outside of aviation demand as well.

10 This improvement is quantified in Chapter 4.
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1.5 OUTLINE OF DISSERTATION

Chapter 2 of this dissertation provides an overview of the literature pertinent to 

the presented research. This includes background information on the forecasting of air- 

travel volumes at different levels of aggregation, the allocation of air-travel volumes to 

air-carriers at different levels of aggregation, the impact of different service attributes on 

airline demand, and airport-pair itinerary share modeling and logit share techniques for 

modeling itinerary share.

Chapter 3 outlines the conceptual and modeling framework of this dissertation. 

This includes an introduction to discrete choice analysis and its techniques, as well as a 

description of the data used.

Chapter 4 details the impact of various itinerary service characteristics on 

itinerary share via the use of multinomial logit (MNL) models. In particular, the impact 

of level-of-service, connection quality, carrier presence, fares, carrier, aircraft size and 

type, and departure time on itinerary share are detailed. Additionally, validation results 

from the implementation of these models by a major U.S. carrier are presented.

Chapter 5 develops several variations of the nested logit (NL) model in order to 

capture the underlying competitive dynamic among air-travel itineraries along the 

dimensions of departure time, carrier and level-of-service. Chapter 6 advances these NL 

models by estimating ordered generalized extreme value (OGEV) and hybrid-OGEV 

models allowing for complicated inter-itinerary competition relationships to be measured.

Finally, Chapter 7 summarizes the findings, contributions and conclusions of this 

research, as well as its limitations and future directions.
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CHAPTER 2: LITERATURE REVIEW

Studies in the air-travel demand modeling literature typically either forecast

volumes at a high level of aggregation or allocate these volumes to a somewhat more 

disaggregate level. The research presented in this study belongs in the second category. 

Until now, the most disaggregate allocation studies have allocated airport-pair volumes to 

flights (nonstop and direct) linking airport-pairs. These allocation studies are not ideal 

since they do not consider all potential travel options (that is, they do not consider 

connections) between the airport-pairs in their respective samples. Additionally, most 

airport-pairs do not have nonstop (or direct) service. Thus, for a given airport-pair, these 

studies do not accurately capture air-traveler behavior. The allocation of airport-pair 

demand should be modeled at the itinerary level (independent of the type of service 

offered in the airport-pair) since the itineraries linking an airport-pair represent all 

possible ways to travel between the airports. The itinerary share models developed in this 

study accomplish this. Though this is the only study to-date that models the allocation of 

airport-pair demand to the itinerary level, it is beneficial to review air-travel demand 

allocation studies at a higher level of aggregation. Additionally, because the final quality 

of any allocation model depends on the accuracy of the volumes it is distributing, it is 

also worthwhile to review the literature on forecasting total air-travel volumes.

Section 2.1 of this chapter reviews literature detailing the forecasting of air-travel 

volumes for given levels of aggregation, with emphasis on the forecasting of system, 

metropolitan region, airport, and city (airport) pair volumes. Section 2.2 reviews studies

14
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that allocate system-wide demand to air-carriers, airport-pair (city-pair) demand to 

carriers, and airport-pair demand to flights linking the airport-pair.

As mentioned in Section 1.3, one motivation for developing the itinerary share 

models of this dissertation was to better understand the impact of different air-carrier 

service characteristics on itinerary share. Because no previous studies have modeled air- 

travel demand at the itinerary level, no information on the link between itinerary-level 

attributes and itinerary demand share is available. However, many aviation demand 

studies (both volume forecasting and allocation) do detail relationships between service 

attributes and airline demand (measured at a higher level of aggregation than itineraries). 

Section 2.3 reviews these studies. In particular, studies measuring the impact of carrier 

presence, fares, route, number of stops (connections), equipment, departure time, elapsed 

trip time, frequent flyer programs and/or service quality on airline demand are reviewed.

Section 2.4 explains that itinerary share modeling (the central problem of this 

dissertation) has not been adequately addressed in the aviation literature. Further, 

techniques are reviewed from the logit share literature that can potentially be used to 

solve the research problem of this study. These techniques are relevant for measuring the 

underlying competitive dynamic among air-travel itineraries, another primary motivation 

of this dissertation.
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2.1 FORECASTING AIR-TRAVEL VOLUMES FOR GIVEN LEVELS OF 
AGGREGATION

2.1.1 FORECASTING SYSTEM VOLUME

The broadest air-travel forecasting studies forecast system demand (either world

wide, continent-wide or U.S. domestic). These typically link demand to time or seasonal 

trends, or broad demographic or economic variables such as gross national product, per- 

capita income, the consumer price index and/or population. For example, Brown and 

Watkins (1968) forecast U.S. domestic system demand using aggregate annual data, 

while English and Keman (1976) use the Delphi method11 to forecast world air-traffic.

Typically, public aviation authorities forecast this system demand. The Federal 

Aviation Administration (FAA) does forecasting for the United States and most studies 

employing U.S. system demand rely on FAA forecasts rather than developing their own 

(Gosling 1994). TRB Transportation Research Circular #348 (1989) provides an 

overview of the methodology employed by the FAA to forecast system demand. 

Obviously, system-wide forecasts are important to national governmental authorities (e.g. 

planning air-traffic control capacities). However, these forecasts shed no light on 

individual travel behavior, regional differences in air-travel demand or on the research 

problem of this dissertation.

2.1.2 FORECASTING METROPOLITAN REGIONAL VOLUMES AND 
AIRPORT VOLUMES IN MULTI-AIRPORT METROPOLITAN REGIONS

Studies in the literature forecasting air-travel volumes for metropolitan regions 

generally employ a top-down forecasting methodology where the FAA national forecast
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is allocated to regions of interest. Regional (for the same reasons as national) forecasts 

give little insight into air-travel behavior. However, regional air-travel forecasts are 

important for regional planning agencies when considering airport capacity and access 

issues, as well as the anticipated effects of changes to the fleet mix. An introduction to 

regional forecasting methods can be found in Mumayiz and Pulling (1992).

Airport demand in multi-airport regions can be obtained from regional demand 

via the use of airport distribution or choice models. Originally, the allocation of air-travel 

demand to individual airports in multi-airport regions was modeled in the literature using 

aggregate demand distribution models, but has recently been treated using discrete choice 

analysis. The motivation for these studies was the realization that the distribution of air- 

travel passengers to airports in multi-airport regions is based on passenger tradeoffs 

among the attributes of each airport. The majority of the studies reviewed for this 

dissertation find that some measure of access time to each airport and some measure of 

air-carrier level-of-service from each airport to the travelers’ destination are the most 

important determinants of airport choice. Not surprisingly, these studies have found that 

higher levels-of-service and lower access times make an airport more attractive and hence 

increase its market share within a region.

The following is a brief review of some representative articles on airport choice. 

Augustinus and Demakopoulos (1978) develop a model that distributes the demand from 

each aviation-planning zone in a metropolitan area to each airport according to a

11 The Delphi method is an iterative judgmental forecasting technique that employs a panel of experts to 
achieve consensus on a given question.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

18

deterministic function that is proportional to the relative access costs of those airports 

to each zone. Skinner (1976) gauges the tradeoff passengers make between access times 

and air-carrier levels-of-service. It is believed that he is the first author to model the 

tradeoffs passengers make between airside and landside attributes in their airport choice 

process.

Harvey (1987) includes non-linear specifications of access time and flight 

frequency in his utility functions. He finds that there is decreasing marginal utility for 

additional flight frequencies from an airport, and there appears to be a saturation point 

where additional frequencies do not add to passenger utility. Additionally, he finds that 

the marginal disutility of access time decreases with total trip time. Ashford and 

Benchemam (1987) incorporate an aggregate fare measure from each airport to the 

travelers’ destination.

12Furuichi and Koppelman (1994) estimate a nested logit model measuring the 

joint destination and departure airport choice of Japanese international air-travelers. The

1 Tauthors incorporate a relative measure of air-carrier level-of-service from each airport 

that is believed to more accurately capture the impact of level-of-service on passenger 

airport choice behavior than absolute measures14. Windle and Dresner (1995b) include an 

airport experience measure into some of their specifications. They find passengers who

12 This paper differs from the other reviewed papers on airport choice because it considers departure 
airports within a country (Japan), not just a metropolitan region.
13 The share of nonstop flights serving the travelers’ destination from the airport with respect to all nonstop 
flights out o f Japan to the travelers’ destination.
14 However, their definition of destination includes countries, continents and even groups of continents, 
rather than a specific metropolitan region.
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have chosen an airport in the past will feel more comfortable with that airport and will 

tend to choose it again (all else being equal).

Hess and Polak (2005) estimate a mixed multinomial logit (MMNL) model of 

airport choice. They find random taste variation across and within segments of the 

population with respect to the impact of access time on airport choice. Basar and Bhat 

(2004) develop a parameterized probabilistic choice set multinomial logit (PCMNL) 

model of airport choice. This allows for a random distribution of choice sets across the 

sample, since even though each airport may be feasible for a traveler, he/she may not 

consider a given airport.

Suzuki et al. (2003) model the phenomena of “airport leakage”, occurring when 

travelers in small metropolitan regions drive long distances to depart from a larger 

metropolitan airport due to its lower fares or more convenient schedule. The authors 

employ two unique variables in their specification. First, they employ a quality of 

experience variable. They find travelers are more likely to choose an airport where they 

had a good experience over an airport where they had a bad experience. They also find 

that a traveler is more likely to choose an airport where he/she had a bad experience over 

an airport where he/she has no experience. Second, they include a variable measuring the 

impact of an airport offering service from an air-carrier of which the traveler is a 

frequent-flyer program member.

Common findings of the above studies are:

• Business passengers are more sensitive to access time in their airport choice 
process than leisure passengers (Harvey 1987; Windle and Dresner 1995b; 
Suzuki et al. 2003; Hess and Polak 2005).
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• Business passengers are more sensitive to flight frequencies (schedule 
convenience) in their airport choice process than leisure passengers (Ashford 
and Benchemam 1987; Harvey 1987; Windle and Dresner 1995b; Hess and 
Polak 2005).

• Access time is more important to air-travelers making short trips than to air- 
travelers making long trips. This is because access time for short trips makes 
up a higher proportion of the total trip time (Augustinus and Demakopoulos 
1978; Harvey 1987).

• Passengers experience non-increasing marginal utility to increases in flight 
frequencies from an airport to their destination (Harvey 1987; Hess and Polak 
2005).

• The general fare level at airports in multi-airport regions is inversely related to 
the probability of airport choice (Ashford and Benchemam 1987; Suzuki et al. 
2003; Hess and Polak 2005).

• Leisure travelers are more sensitive to fares then business travelers with 
respect to their choice of airport (Ashford and Benchemam 1987; Suzuki et al. 
2003; Hess and Polak 2005).

The above-mentioned studies have improved our understanding of the factors that 

influence airport choice in multi-airport regions. However, some of the variable 

specifications used in these studies are problematic. For example, many of the studies use 

daily (or even weekly) nonstop flight frequencies to the travelers’ destination from a 

given airport to measure its level-of-service. In addition to only looking at nonstop 

flights, this aggregate approach of combining flight frequencies across time periods and 

carriers over-simplifies the air-traveler choice process. A measure of the amount and type 

(ideally by departure time, carrier, routing, etc.) of itineraries linking airports would 

better quantify the level-of-service offered by the airport. Similarly, the studies that 

include a fare variable generally use an extremely aggregate measure (across time
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periods, carriers, classes of service, etc.). These measures do not accurately represent 

the effect that the distribution of fares has on airport choice. Finally, numerous other 

variables (not explicitly included in the above studies) may be relevant to airport choice 

such as the quality of parking facilities, types and quality of transit access, airline lounge 

availability, terminal congestion and propensity for delays. Clearly, the limited 

availability of data precludes the estimation of models including many of these variables. 

However, if possible, these variables (in addition to better fare and level-of-service 

variables) should be considered in future airport-choice models.

2.1.3 FORECASTING CITY-PAIR (AIRPORT-PAIR) VOLUMES

City-pair forecasts are commonly based on city-pair attributes, measures of air- 

carrier service quality between the cities15 and average fare levels. It has been found that 

city-pair air-travel demand is related to the demographic and geographic properties of the 

city-pair. For example, demand has been shown to be positively related to income 

measures of the city-pair (Brown and Watkins 1968; Brown and Watkins 1971; Verleger 

1972; De Vany and Garges 1972; Douglas and Miller 1974a; De Vany 1974; Kanafani 

and Fan 1974; De Vany 1975; Ippolito 1981; Anderson and Kraus 1981; Abrahams 1983; 

Dresner et al. 1996; Corsi et al. 1997), to be positively related to population measures of 

the city-pair (De Vany and Garges 1972; De Vany 1974; Kanafani and Fan 1974; De 

Vany 1975; Ippolito 1981; Abrahams 1983; Reiss and Spiller 1989; Dresner et al. 1996; 

Corsi et al. 1997) and to be related to the distance between the cities which can positively 

(Ippolito 1981; Corsi et al. 1997) or negatively (Brown and Watkins 1968; Brown and
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Watkins 1971; De Vany and Garges 1972; De Vany 1974) affect the amount of air- 

travel between them16.

Brown and Watkins (1968, 1971) and Abrahams (1983) use variables that are 

unique in the aviation demand literature to model city-pair demand. For example, Brown 

and Watkins (1968, 1971) use the number of phone calls between cities as a proxy for the 

city-pairs’ “community of interest”. This variable is shown to be positively related to air- 

travel demand (although the causality is not known). Brown and Watkins (1968) relate a 

competition index17 to city-pair demand. Abrahams (1983) incorporates an air-car 

relative-cost modal split variable into his specification. Finally, Reiss and Spiller (1989) 

separately model city-pair nonstop and connecting air-travel demand. However, it is 

doubtful that passengers a priori decide (as is assumed in their model) whether to fly 

nonstop or not. Rather, they decide to travel between the city-pair and other factors {e.g. 

fares, airline preference) determine whether they fly nonstop18.

The conclusions of many of the above-mentioned studies are weakened by the use 

of very aggregate variables in their specifications {e.g. average city-pair fares). No 

consideration is given to independent variable differences across itineraries, carriers, 

departure times, etc. They also do not recognize regional or travel-characteristic 

differences amongst the city-pairs. Thus, due to the fact that these studies ignore demand

15 Overall nonstop flight frequency (across carriers) is usually used as a proxy for service quality in a city- 
pair.
16 Distance may be positively related to city-pair air-travel demand since air-travel may be the only viable 
mode of transportation between long-distance city-pairs. However, long distances also imply high elapsed 
travel times which tend to depress demand.
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property differences between markets and their use of aggregate variables, their city- 

pair demand functions may have little connection to the underlying micro-travel demand 

functions (Verleger 1972). Potentially, city-pair air-travel volume forecasts can be 

improved by employing measures of city-pair service extracted from the itinerary share 

models estimated in this study.

2.2 MODELING THE ALLOCATION OF AIR-TRAVEL VOLUMES FOR 
GIVEN LEVELS OF AGGREGATION TO AIR-CARRIERS OR FLIGHTS

2.2.1 MODELING SYSTEM-WIDE CARRIER SHARE

The broadest allocation studies distribute system-level demand to individual 

carriers. Nason (1981) develops a model of system-wide airline choice using stated 

preference survey data by giving respondents a series of questions and asking them to 

choose which airline has the “best” service for various service attributes. His model 

predicts airline choice as a function of socioeconomic passenger characteristics as well as 

these reported service attribute ratings. Morash and Ozment (1996) link airlines’

“external time advantages” (e.g. on-time reliability, frequency of service, denied 

boardings, percentage of flights cancelled) and “internal time advantages” (e.g. network 

size and density) to customer perception of quality and ultimately system market share. 

Finally, Suzuki et al. (2001) link airline customer service quality (and other attributes) 

with system market share using a loss-aversion19 framework.

17 This variable measures the percentage o f the second largest carriers’ traffic in a market to that of the 
largest carriers’ traffic in the market. The parameter estimates for this variable were positive indicating that 
increased competition within a market is a positive factor affecting market demand.
18 See Subsection 2.3.3 on air-travel route choice for a more detailed discussion o f this topic.
19 Loss aversion theory states that consumers evaluate product attributes relative to a reference point and 
react more strongly to losses (negative deviations from the reference point) than to equivalent-sized gains 
(Suzuki et al. 2001).
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2.2.2 MODELING CITY-PAIR (AIRPORT-PAIR) CARRIER SHARE

Using revealed preference data, a few studies in the literature model the allocation 

of city-pair demand to air-carriers as a function of the carriers’ city-pair characteristics 

(Ghobrial and Soliman 1992; Nako 1992; Proussaloglou and Koppelman 1995). These 

studies employ “better” variables (with respect to behavioral interpretations and 

managerial implications) in their specifications than the system-level allocation studies 

such as peak and off-peak flight frequency (Ghobrial and Soliman 1992), itinerary quality 

(number of stops) (Ghobrial and Soliman 1992), commuter airline indicators (Ghobrial 

and Soliman 1992), frequent flyer program membership variables (Nako 1992; 

Proussaloglou and Koppelman 1995), percentage of direct flights offered (Nako 1992) 

and a nonlinear specification for flight share (Proussaloglou and Koppelman 1995).

2.2.3 MODELING AIRPORT-PAIR FLIGHT SHARE

Using both revealed preference (RP) and stated preference (SP) survey 

methodologies, recent studies have modeled flight-level allocation by gauging the 

tradeoffs that passengers make among flight attributes in their flight-choice behavior 

(Yoo and Ashford 1996; Proussaloglou and Koppelman 1999; Bruning and Rueda 2000; 

Algers and Beser 2001). Yoo and Ashford (1996) develop RP and SP models for the 

international flight choice behavior of Korean air-travelers. Their specifications include a 

dummy variable indicating whether a flight was operated by a Korean airline. They find 

(all things being equal) Korean airlines were viewed more positively by Korean travelers 

than non-Korean airlines. Algers and Beser (2001) using a blend of RP and SP 

techniques, and Proussaloglou and Koppelman (1999) using SP techniques, show
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empirically that schedule delay20 has a negative impact on flight choice probabilities 

with the impact being greater for business travelers than leisure travelers (Proussaloglou 

and Koppelman 1999). Finally, Bruning and Rueda (2000) using SP methods gauge the 

importance of frequent flyer program membership on flight choice.

2.3 THE IMPACT OF SERVICE ATTRIBUTES ON AIRLINE DEMAND

This section describes the relationships between different service attributes and 

airline demand that have been discovered in the literature. Note that even though each 

service characteristic is treated separately, most of them are interrelated. For example, 

airline presence is positively correlated with airline fares, connection quality is related to 

elapsed travel time, etc.

2.3.1 THE IMPACT OF AIR-CARRIER PRESENCE ON AIRLINE DEMAND

Loosely defined, air-carrier presence refers to the amount of scheduled service 

offered between an airport-pair (industry-wide or carrier specific) or the amount of 

service supplied out of an airport (industry-wide or carrier specific). Early studies (using 

data from the regulatory period) framed the airport-pair scheduling decisions of the 

airlines as a proxy for the amount of service quality offered in a market (Douglas 1971; 

Douglas and Miller 1974a; Douglas and Miller 1974b; De Vany 1975; Ippolito 1981; 

Anderson and Kraus 1981; Abrahams 1983). In these studies, airport-pair service quality 

is typically defined as the expected amount of schedule delay21 an average passenger

20 The difference in time between a passengers’ desired departure time and the departure time of a given 
scheduled flight.
21 Schedule delay as defined here is the sum o f frequency and stochastic delays. Frequency delay is the time 
difference between a passengers’ desired departure time and the time of the closest scheduled departure. A
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incurs from the air-carrier schedule (across carriers) in that market. Using this 

definition, airport-pair service quality is positively related to flight frequency and 

equipment size since more frequencies lessen frequency delays and larger airplanes 

lessen stochastic delays. De Vany (1975), Ippolito (1981) and Abrahams (1983) show 

that city-pair demand is positively related to increases in market frequency and/or 

capacity.

The prevalence of hub-and-spoke networks after deregulation resulted in 

tradeoffs to consumers. There is evidence that hubbing has allowed airlines to exhibit 

market power at their hubs. For a given route, studies have shown that prices are higher 

when operated by a carrier who has a hub on either (or both) ends of the route compared 

with carriers who do not have a hub at either end, as well as being higher for carriers who

99dominate service on that particular route (Huston and Butler 1988; Borenstein 1989; 

Berry 1990; Borenstein 1990; Dresner and Windle 1992). However, these price 

premiums have been modest since (potentially) airlines have passed some of the cost 

savings achieved from hubbing to consumers as well as the fact that airline markets are 

contestable23. Finally, research has shown the characteristics of the carriers competing on 

a route determine its price more than the number of carriers. That is, a route dominated

passenger incurs stochastic delay if  the flight he/she wants to take is booked to capacity and the passenger 
has to take a different flight.
22 Airport domination does not necessarily imply route domination for a given route, although they are 
positively related. In this discussion, they will be treated interchangeably.
23 Due to the mobile nature o f its capital and the low costs of establishing service, it is easy for an airline to 
enter a given market (assuming gate and slot availability). Thus, there is an incentive for a carrier who 
dominates a route not to charge too high a fare lest they attract competition (Huston and Butler 1988).
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by a low-cost carrier may have lower prices than a less concentrated route served by 

several legacy carriers (Windle and Dresner 1995a).

Clearly, the growth of hub-and-spoke networks after deregulation resulted in the 

loss of nonstop service between many small city-pairs. However, this was compensated 

for by more frequent (though with longer elapsed times) service between these city-pairs 

via connections through a hub. See Douglas (1971), De Vany and Garges (1972), 

Kanafani and Chang (1979), Kanafani and Ghobrial (1982), Kanafani and Ghobrial 

(1985) and Ghobrial and Soliman (1992) for a discussion of this tradeoff. Additionally, 

hub-and-spoke networks resulted in more frequent service from hubs to spoke cities 

(since the demand for each flight to a spoke was being fed from all over the system) and, 

for spoke cities, gave passengers better access to more destinations. Thus, one result of 

hub-and-spoke networks was that passengers got more frequencies to their destinations 

but had less direct routings and longer elapsed travel times24.

In summary, carriers have been able to charge premium prices on routes to and 

from their hubs while simultaneously offering frequent service to their spoke airports. 

They can achieve this since carriers who dominate a route will capture a disproportionate 

share of the market and be able to charge a higher fare than their competitors (Douglas 

and Miller 1974b; Kanafani and Ghobrial 1985; Borenstein 1989; Berry 1990). Reasons 

for airlines being able to charge a premium for flights to and from their hubs include hub-

24 Recently, low-cost carriers offering point-to-point service between many airports have tempered these 
results. Simultaneously, many legacy carriers have dramatically increased their use of regional jets. This 
regional jet service has provided many small and medium-sized cities with convenient access to several 
different air-carrier hubs which previously were not directly accessible because o f  technological and/or 
economic constraints.
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city “hometown” marketing advantages, local travel agents steering passengers to the 

dominant airline so that the agent can receive higher commissions25, the ability to offer 

customers convenient flight schedules, the ability to offer customers in the hub cities 

more direct flights and (most importantly) the ability to induce customer loyalty by 

offering effective frequent flyer programs (Kanafani and Ghobrial 1985; Borenstein 

1989; Berry 1990; Borenstein 1990; Dresner and Windle 1992).

Recent studies have linked air-carrier presence to airline choice using discrete 

choice analysis where the impact of presence is estimated relative to other carrier 

attributes. For example, using survey data, studies show indirect measures of air-carrier 

presence (such as perceived schedule convenience26) influence carrier choice 

probabilities (Nason 1981; Proussaloglou and Koppelman 1995; Proussaloglou and 

Koppelman 1999; Algers and Beser 2001). Additionally, direct measures of presence 

such as the number of nonstop frequencies to a travelers’ destination (Ghobrial and 

Soliman 1992; Nako 1992; Yoo and Ashford 1996), airport dominance (Ghobrial and 

Soliman 1992; Nako 1992; Proussaloglou and Koppelman 1995; Proussaloglou and

Koppelman 1999) and percentage of nonstop frequencies to a travelers’ destination

11(Nako 1992; Proussaloglou and Koppelman 1995 ) are shown to positively influence 

carrier choice.

25 Historically, this was one reason dominant airlines could charge a premium. However, since the latest 
industry downturn magnified by the September 11th, 2001 terrorist attacks, commissions have been severely 
scaled back or eliminated.
26 Presumably, this is a function of flight frequencies, number of destinations served, direct flight offerings, 
etc.
27 Proussaloglou and Koppelman (1995) use a non-linear specification of airport-pair flight share.
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Some of these discrete choice studies relate air-carrier presence with other 

characteristics via the use of innovative specifications. For example, Ghobrial and 

Soliman (1992) link the value of a carrier’s service offerings with departure time by 

separately modeling the effects of peak and off-peak flight frequencies on airport-pair 

airline choice. All things being equal, they find that passengers view a flight during peak 

periods as 2.18 times more favorable than a flight during the off-peak periods. Nako 

(1992) finds that the effectiveness of a carrier’s frequent flyer program in attracting 

passengers from an originating airport is dependent upon its market share at the airport. 

Additionally, he finds that business travelers are willing to pay approximately $12 for an 

additional flight frequency to their destination.

Finally, carrier network characteristics such as average flight departures per 

airport, average market share per city and number of airports served influences carrier 

choice at the system level (Morash and Ozment 1996; Suzuki et al. 2001) and as was 

shown in Subsection 2.1.2, the level of air-carrier presence at airports in multi-airport 

regions strongly influences airport choice.

2.3.2 THE IMPACT OF FARES ON AIRLINE DEMAND

Fare is an important attribute influencing air-travel especially amongst leisure 

travelers. Unfortunately, due to the overall unavailability (to researchers) of industry

wide disaggregate fare data, detailed relationships between fares and demand are not well 

understood.

Using national aggregate measures, Brown and Watkins (1968) and Kanafani 

(1980) show that system-wide air-travel demand and fares are inversely related (all things
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being equal). Total city-pair demand is also negatively related to market fare levels 

(Brown and Watkins 1968; Brown and Watkins 1971; De Vany and Garges 1972; De 

Vany 1974; De Vany 1975; Jung and Fujii 1976; Ippolito 1981; Abrahams 1983; Dresner 

et al. 1996; Corsi et al. 1997).

Some studies have concluded that the (overall) demand for air-travel is price 

elastic (Brown and Watkins 1968; Brown and Watkins 1971; De Vany and Garges 1972; 

De Vany 1975; Jung and Fujii 1976) while others have found that the degree of price- 

elasticity depends on factors such as the response period (short vs. long-term elasticities), 

the distance of the trip or the type of traveler (business vs. leisure). For example, it is 

theorized that long-term price-elasticities of demand are larger in magnitude than short

term elasticities since the effects of price changes take time to be absorbed by the 

traveling public. Brown and Watkins (1968), Kanafani (1980) and Abrahams (1983) 

show this empirically.

The relationship between price-elasticities and trip distance has gotten 

contradictory results in the literature. One theory is that passengers on short-haul trips 

(who are usually business travelers) exhibit less sensitivity to fares than long-haul 

passengers since their values-of-time are larger and they may fly regardless of the fare 

level. A competing theory is that short-haul air-trips have more competition with other 

transportation modes; thus, it can be expected that the price-elasticities of demand for 

short trips would be greater than long trips. Abrahams (1983) shows evidence of the 

former theory while Douglas and Miller (1974a) and Jung and Fujii (1976) show 

evidence of the latter. Brown and Watkins (1968) find demand to be fare-inelastic for
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short and long-distance city-pairs but elastic for moderate distance city-pairs (these 

city-pairs have the highest competition with ground modes). Finally, Brown and Watkins 

(1971) show no evidence that the price elasticity of demand for air-travel depends on trip 

distance.

Brown and Watkins (1971) find that first-class passengers are not only sensitive 

to the price of first-class tickets but are also sensitive to the price of coach tickets (with a 

strong cross-elasticity of 1.3). Coach passengers, on the other hand, are only sensitive to 

the price of coach seats (with a direct elasticity o f -1.3). Kanafani (1980) in his study of 

non-business air-travelers finds that leisure air-travelers are inelastic with respect to fares 

but highly elastic with respect to per-capita recreational expenditures (with a long-run 

recreational expenditures elasticity of 1.9). Finally, as expected, Abrahams (1983) shows 

leisure air-travel to be more price-elastic than business air-travel.

Other authors recognize that demand is not only a function of fares (out-of-pocket 

cost) but also time cost. De Vany (1974) derives a “full-price” elasticity of demand 

incorporating price and time costs. Using this measure, he finds city-pair air-travel 

demand is only slightly price-elastic using the traditional measure but much more elastic 

when incorporating time costs. Similarly, Anderson and Kraus (1981) find city-pair 

demand is inversely related to the origin city consumer price index plus time costs.

Most of the above-referenced studies use average fare paid at the city-pair (or 

even national) level or the average published fare to calculate elasticities. Generally, no 

consideration is given to differences in airline, fare-class, departure time, etc. Since 

accurate elasticities can be determined only by knowing the actual fares available to
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disaggregate customers and their corresponding choice of carrier, flight and fare-class, 

the conclusions of the above studies cannot be wholly trusted. In his convincing study, 

Verleger (1972) concludes that studies employing aggregate measures of fare do not yield 

proper demand functions and hence give incorrect price elasticity estimates. He finds air- 

travel demand to be much more income elastic than price elastic.

Recent studies using discrete choice analysis with stated preference (Nason 1981; 

Bruning and Rueda 2000), revealed preference (Ghobrial and Soliman 1992; Nako 1992; 

Proussaloglou and Koppelman 1995) or a blend of SP and RP (Yoo and Ashford 1996; 

Proussaloglou and Koppelman 1999; Algers and Beser 2001) data to model the carrier or 

flight choice behavior of passengers have also (not surprisingly) found that higher fare- 

levels negatively influence choice. In particular, Proussaloglou and Koppelman (1995, 

1999) determine that leisure passengers are more sensitive to fares than business 

passengers. Bruning and Rueda (2000) find that fare is the most important attribute of 

flight choice, more important than the number of stops, frequent flyer programs and on-

■ 98time performance . Finally, Suzuki et al. (2001) find system-wide carrier share is 

inversely related to fare levels in a loss aversion fashion. Most of these discrete choice 

studies also suffer from the use of aggregate fare data. Thus, their conclusions with 

respect to the relative importance of fare (compared to other attributes) on airline demand 

are limited.

28 This conclusion holds for their full sample. Some segments o f the sample had different rankings for the 
importance o f these attributes.
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2.3.3 THE IMPACT OF ROUTE ON AIRLINE DEMAND

Air-travel route choice29 models assign passengers to paths between airport-pairs. 

These passengers can then be “rolled up” to determine flows on the links in the network. 

Kanafani and Fan (1974), Kanafani and Ghobrial (1982) and Kanafani and Ghobrial 

(1985) embed a route choice model within a larger model of air-travel demand. Kanafani 

and Chang (1979) however, explicitly describe and develop a multinomial logit route 

choice model that assigns quarterly airport-pair demand to the paths between the airports. 

Aggregate independent variables are used such as average route travel time, frequency, 

fare, a dummy variable for whether the route is direct, and a dummy variable for whether 

a connecting route is online or offline. The authors find that a model employing only 

route time and frequency performs as well as models with more advanced specifications. 

Ndoh et al. (1990) also model route choice with frequency, average journey time, average 

connecting time (if a connection) and average number of seats supplied as independent 

variables. One of their findings is that passengers have a seven-fold preference for direct 

routings (flights) over indirect routings (flights).

Because these studies do not consider disaggregate itinerary-level attributes such 

as carrier, departure time, connection quality or equipment, they do not adequately 

explain air-traveler behavior. Modeling itinerary shares and then summing these forecasts 

up to the route (path) level is the best way to model route shares.

29 Route choice is not the same as itinerary choice. Route choice (as used here) simply means the choice of 
a given path between airports (independent o f departure time, equipment used, carrier, connecting time, 
etc.).
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2.3.4 THE IMPACT OF THE NUMBER OF STOPS (CONNECTIONS) ON 
AIRLINE DEMAND

Few studies have modeled the impact of the number of stops on airline demand. 

The studies that have have used either aggregate measures (e.g. average number of stops 

between a given city-pair) or stated preference survey data. The “schedule convenience” 

survey measure employed by Nason (1981) and Proussaloglou and Koppelman (1995, 

1999) indirectly measures the availability of nonstop flights to a passengers’ destination. 

Bruning and Rueda (2000) show an increase in the number of stops negatively influences 

flight choice for all travelers, with business and/or frequent travelers rating the number of 

stops as the most important attribute when making their flight decisions. Nako (1992) 

calculates that business travelers on a connecting flight would be willing to pay 

approximately $56 for direct service.

Brown and Watkins (1968) show city-pair demand to be positively related to the 

“best” air-travel path between them. That is, all things being equal, city-pairs with 

nonstop service will have more demand than city-pairs with one-stop service as the best 

service, which in turn will have more demand than city-pairs with two-stop service as the 

best service . They show that the effect on demand of going from no stops to one stop is 

approximately the same as the effect of going from one stop to two stops. Ghobrial and 

Soliman (1992) show that as the average number of stops a carrier has in a given market 

increases, its carrier choice probability decreases. Finally, in their route choice study,

30 Of course, it is likely that city-pairs with nonstop service have the service because o f high demand rather 
than the other way around.
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Ndoh et al. (1990) show nonstop flights are significantly preferred over flights 

involving a connection.

2.3.5 THE IMPACT OF EQUIPMENT ON AIRLINE DEMAND

The impact of equipment type and size on airline demand has not gotten much 

attention in the literature. In his survey, Nason (1981) asked his respondents to gauge 

which airline (in general) offered the greatest number of wide-body flights, while 

Ghobrial and Soliman (1992) measure the average number of seats offered by a carrier in 

a city-pair. However, equipment size and type can only be accurately measured at the 

itinerary level.

2.3.6 THE IMPACT OF DEPARTURE TIME ON AIRLINE DEMAND

The impact of carrier time of day schedule offerings has also not been modeled 

extensively in the literature. The schedule convenience measure employed by some 

authors in their survey studies captures the extent to which airlines offer flight services 

near the desired departure times of their customers (Nason 1981; Proussaloglou and 

Koppelman 1995; Proussaloglou and Koppelman 1999; Algers and Beser 2001). 

However, use of these models requires a basis for determining departure time 

preferences. The specifications employed by these studies assume travelers regard a 

departure time that is earlier than their desired departure time just as negatively as a 

departure time that is later than their desired departure time. Proussaloglou and 

Koppelman (1999) demonstrate that business travelers are more sensitive to deviations 

from their desired departure times than leisure travelers. Finally, using revealed
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preference data, Ghobrial and Soliman (1992) include peak and off-peak flight- 

frequency in their model of city-pair airline choice.

2.3.7 THE IMPACT OF ELAPSED TRIP TIME ON AIRLINE DEMAND

The impact of elapsed travel time on air-travel demand is treated indirectly in 

several other sections of this literature review. For example, Subsection 2.3.2 mentions 

that travel time can be thought of as a cost affecting the demand for air transportation, 

Subsection 2.3.1 relates air-carrier schedules with the potential for frequency and/or 

stochastic delays, Subsection 2.1.2 mentions airport access time (which in that subsection 

is used to model airport choice in multi-airport regions), Subsection 2.3.4 relates travel 

time to the number of connections and Subsection 2.3.5 relates travel time to equipment 

flown. The following discussion examines the direct relationship between elapsed travel 

time (defined by flight times plus any connecting ground time) and demand.

Brown and Watkins (1968, 1971) and Kanafani and Fan (1974) show average 

elapsed travel time in a city-pair is inversely related to city-pair demand, while De Vany 

and Garges (1972) and De Vany (1974) find that travel time (represented by the shortest 

elapsed travel time in a city-pair) is inversely related to city-pair demand. Yoo and 

Ashford (1996) show elapsed time negatively influences flight choice. Additionally, they 

conclude from one of their model estimations that business travelers have a value of time 

of approximately $56 per hour, while leisure travelers have a value of time of 

approximately $48 per hour. Nako (1992) shows average airline travel times in a city-pair 

negatively influences carrier choice probabilities in that city-pair (he finds business 

travelers value time at an average of $25 per hour). Finally, Kanafani and Chang (1979)
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and Ndoh et al. (1990) use route choice models to show the elapsed time of a route 

negatively influences its probability of being chosen.

Because the ultimate air-traveler choice is itinerary choice, where each itinerary 

has an associated elapsed time (flight time plus ground time if a connecting itinerary), 

modeling itinerary demand shares as a function of itinerary elapsed time is the 

appropriate way to gauge the true relationship between demand and elapsed times. The 

studies mentioned above use measures (such as average elapsed travel time in a city-pair) 

whose level of aggregation does not allow for true micro-level relationships to be 

established.

2.3.8 THE IMPACT OF FREQUENT FLYER PROGRAMS ON AIRLINE 
DEMAND

American Airlines introduced the first frequent flyer (FF) program in 1981 as a 

marketing initiative to induce brand loyalty among its frequent business customers. Soon 

after, the vast majority of domestic airlines offered their own FF programs and the 

popularity of these programs skyrocketed. The basic idea of these programs is that 

passengers by traveling on a given airline accumulate mileage redeemable for free flights 

and/or upgrades at a later date. Today, tens of millions of people are members of at least 

one FF program.

Airlines introduced FF programs for several reasons including the desire to 

generate brand loyalty and repeat business from lucrative business travelers, to achieve 

product differentiation by taking advantage of their route networks and to obtain valuable 

demographic and travel-behavior data from their program members. However, these
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programs have gotten larger than the airlines ever anticipated, introducing a slew of 

financial issues for the airlines (e.g. revenue dilution, revenue passenger displacement, 

the liabilities of unused rewards), ethical issues31 and legal issues such as whether FF 

programs are anti-competitive32. Discussing the above issues and related questions is 

beyond the scope of this research. However, several articles in the literature discuss the 

origins of these programs, their successes and failures, the profiles of FF members, the 

issues raised above and more (Toh and Hu 1988; Lefer 1988; Hu et al. 1988; Tretheway 

1989; Kearney 1990; Ellis 1998).

The question of relevance for this dissertation is to determine what effect, if any, 

FF programs have on travelers’ itinerary choice. It is expected that frequent flyer 

membership has a positive impact on airline choice since (all things being equal) a 

traveler will be inclined to choose an airline of which he/she is a frequent flyer member 

due to the promise of future benefits that can be earned by using that airline.

The literature reports mixed results concerning the effectiveness of FF programs. 

Toh and Hu (1988), Nako (1998) and Bruning and Rueda (2000) find that relative to 

other factors FF membership does not appear to be dominant, but rather has a marginal 

impact on carrier loyalty. The effectiveness of FF programs in inducing loyalty may be 

limited since many frequent flyers (especially those who fly most frequently) belong to

31 For example, FF programs have created a principal-agent problem among frequent flyer employees and 
the employers who pay for their travel since the employees receive the benefits o f FF programs. With these 
programs, there is a possible incentive for employees to book flights at higher prices than necessary or to 
take circuitous routings to receive benefits at the expense o f  their employer.
32 The costs associated with setting up these programs and the fact that smaller airlines have to give more 
frequent and lucrative rewards through their programs (to compensate for their smaller route networks) 
may constitute a barrier to entry for potential new carriers. Additionally, it has been hypothesized that FF
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more than one carriers’ program (Toh and Hu 1988; Lefer 1988). Regardless, Bruning 

and Rueda (2000) find that FF programs are more important to frequent business 

travelers whose tickets are paid for by their employers, while Nako (1992) shows that the 

effectiveness of FF programs differs across airlines and depends on the presence the 

corresponding airlines have in the cities where their participating members reside.

In contrast to these studies, Proussaloglou and Koppelman (1995) find that FF 

membership and active participation in a FF program are the most important determinants 

of carrier choice relative to other carrier attributes. Proussaloglou and Koppelman (1999) 

confirm this result and estimate the premium that passengers are willing to pay to travel 

on a carrier of which they are frequent flyer members. Other authors have also 

recognized that air-travel passengers will pay a premium to travel on an airline of which 

they are frequent flyer members (Borenstein 1989; Berry 1990; Borenstein 1990; Dresner 

and Windle 1992).

Finally, it is hypothesized that since short distance air-travelers pay a higher per- 

mile fare than long distance travelers, they may not receive as much benefit from the 

typical FF program where benefits are accrued on the basis of mileage. Thus, from a 

customer preference and airline marketing standpoint, trip-based FF program schemes 

may be more attractive to travelers who typically travel short distances, while mileage- 

based FF programs may be more attractive to travelers who travel long distances (Suzuki

programs led the industry to consolidate in the mid 1980’s since there was no economic or operational 
reasons for this consolidation.
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2003). Finally, FF membership has also been shown to influence airport (and 

ultimately airline) choice (Suzuki et al. 2003).

2.3.9 THE IMPACT OF SERVICE QUALITY ON AIRLINE DEMAND

It is likely that air-carrier service quality has an impact on carrier choice. A 

carrier’s service quality can refer to its on-time performance, baggage handling record, 

staff and crew friendliness, food quality, safety record, etc.

On-time performance (or perceived on-time performance) is the most common 

measure of service quality modeled in the literature (Nason 1981; Nako 1992; 

Proussaloglou and Koppelman 1995; Morash and Ozment 1996; Proussaloglou and 

Koppelman 1999; Bruning and Rueda 2000; Suzuki et al. 2001). All of these studies 

conclude that on-time performance improvements translate to increased carrier demand. 

Proussaloglou and Koppelman (1995) show that frequent travelers are more sensitive to 

on-time reliability than less-frequent travelers, and Suzuki (2000) develops a model 

showing that passengers who experienced flight delays on their last trip are more likely to 

switch airlines for their next trip than passengers who did not experience delays.

Other service quality attributes that have been measured with respect to their 

impact on demand include baggage handling record (Nason 1981; Morash and Ozment 

1996; Suzuki et al. 2001), efficient check-in procedures (Nason 1981; Suzuki et al.

2001), staff friendliness (Nason 1981; Morash and Ozment 1996), food quality (Nason 

1981; Suzuki et al. 2001), safety record (Nason 1981; Suzuki 2000; Suzuki et al. 2001), 

and flight cancellations or denied boardings (Morash and Ozment 1996).
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Proussaloglou and Koppelman (1999) show that a general notion of perceived 

carrier quality of service positively influences carrier choice probabilities, while Suzuki 

et al (2001) model system airline share as a function of service quality using a loss 

aversion framework.

2.4 AIRPORT-PAIR ITINERARY SHARE MODELING AND LOGIT SHARE 
TECHNIQUES FOR MODELING ITINERARY SHARE

2.4.1 MODELING AIRPORT-PAIR ITINERARY SHARE

None of the above-referenced aviation demand studies systematically model 

itinerary shares. As mentioned previously, understanding the relationship between some 

service attributes and airline demand is only possible by employing itinerary-level data. 

Until recently, this was a gap in the literature. However, in preparation for this 

dissertation, Coldren et al. (2003), Coldren and Koppelman (2005a) and Coldren and 

Koppelman (2005b) began the process of filling this gap by developing initial itinerary 

share models. These models link itinerary-level air-carrier attributes with airport-pair 

itinerary demand share. The research presented in this dissertation builds on that 

framework.

2.4.2 LOGIT SHARE TECHNIQUES FOR MODELING ITINERARY SHARE

This dissertation performs aggregate share analyses using advanced discrete 

choice model structures (in particular, GEV models (McFadden 1978)) to model the air- 

travel itinerary share problem. In addition to measuring the impacts of different service 

characteristics on itinerary share, the use of GEV models allows the underlying 

competitive relationships between itineraries to be captured.
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The simplest and most widely used discrete choice model is the multinomial 

logit model derived by McFadden (1974). The MNL model has been used in many 

marketing and transportation applications. In particular, it is used in many of the above- 

mentioned air-carrier allocation studies (Nason 1981; Ghobrial and Soliman 1992; Nako 

1992; Proussaloglou and Koppelman 1995; Yoo and Ashford 1996; Proussaloglou and 

Koppelman 1999; Algers and Beser 2001; Suzuki et al. 2001). However, the assumptions 

that underlie the MNL derivation produce choice-probability cross-elasticities that are 

equal across all other alternatives in response to a change in an attribute value of a single

33alternative. This limits its appropriateness for modeling itinerary shares .

McFadden (1978) introduced the generalized extreme value family of models 

allowing for much more modeling flexibility than the restrictive MNL (which itself is a 

member of the GEV family). The most widely used relaxation of the MNL model is the 

nested logit model. The NL model allows for the grouping of alternatives (with similar 

characteristics) into “nests”. The estimation of this model quantifies the similarity of 

alternatives in a given nest, within which cross-elasticities are greater than between 

alternatives not in a common nest. For a given airport-pair, since it is likely that the 

itineraries of a given carrier (or departure time-period) share similar characteristics, the 

NL model may be relevant to itinerary share modeling. Koppelman and Wen (1998a, 

1998b) detail the differences between the utility maximizing nested logit (UMNL) model 

developed at about the same time by McFadden (1978) and Williams (1977), and the 

non-normalized nested logit (NNNL) model widely attributed to Daly (1987). The latter
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model is not consistent with random utility maximization, produces unrealistic 

elasticity interpretations and may result in inconsistencies in the interpretation of 

parameters.

In addition to the NL model, GEV models which may be relevant to itinerary 

share modeling include the cross-nested logit (CNL) model (Vovsha 1997), the ordered 

generalized extreme value model (Small 1987), the principles of differentiation (PD) 

model (Bresnahan et al. 1997) and the generalized nested logit (GNL) model (Wen and 

Koppelman 2001) of which the MNL, NL, CNL, OGEV and PD models are special 

cases.

Properties of discrete choice models in general and specific GEV models in 

particular will be expanded upon in the remaining chapters of this dissertation. The use, 

description, and introduction of these models with respect to itinerary share modeling 

will also be detailed. However, for a very useful and comprehensive summary of GEV 

(and other closed-form) discrete choice models see Koppelman and Sethi (2000).

33 This conclusion will be discussed extensively in Chapter 5.
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CHAPTER 3: CONCEPTUAL AND MODELING FRAMEWORK

Discrete choice scenarios arise when decision-makers must choose from a set of 

mutually exclusive and collectively exhaustive alternatives. This chapter is divided into 

two sections: Section 3.1 briefly introduces discrete choice analysis and some of its 

techniques and Section 3.2 describes the discrete choice scenario presented in this 

dissertation, the data employed and aggregation issues arising from the use of this data.

3.1 INTRODUCTION TO DISCRETE CHOICE ANALYSIS AND TECHNIQUES

Following the framework established by Domencich and McFadden (1975), discrete 

choice scenarios are described by four elements: a decision-maker, the alternatives 

available to the decision-maker, attributes of these alternatives, and a decision rule.

The decision-maker is an individual person or group of persons (who make a 

common decision). The alternatives available to the decision-maker must be discrete, 

each of which has a vector of attributes. Finally, although there are numerous decision 

rules (e.g. dominance, satisfaction34), the decision rule commonly assumed is that 

decision-makers choose the alternative that maximizes their utility.

The analyst does not know the actual utility that decision-makers achieve from 

alternatives, however. Following convention, the utility of each alternative for a given 

decision maker is decomposed into two components: a deterministic component 

consisting of observable attributes of the alternative, and a random component 

representing unknown and/or unobservable components of the decision maker’s utility.

34 See Ben-Akiva and Lerman (1985) for definitions and examples o f these and other decision rules.
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Further following convention, the utility of alternative i , Ui, is expressed as the sum 

of the deterministic component, V , and the random component, S i:

Since Si is a random variable the entire utility, Ui, is a random variable. V  is generally 

assumed to be linear-in-parameters where:

That is, an alternative’s deterministic value, Vi, is a linear function of explanatory 

variables (attributes, represented above by the X u's)  and their corresponding parameter 

estimates (represented above by the /3k's). The parameter estimates provide an 

understanding of the relative importance of different attributes on choice. In this 

formulation, decision-makers make tradeoffs among the attributes of the alternatives and 

are able to represent the attractiveness of each alternative as a scalar value. This entire 

formulation of alternative utility is referred to as linear in parameters with additive 

disturbance (LPAD) (Manski 1973).

Since it is assumed that a decision-maker selects the alternative from his/her 

choice set (denoted by C ) that maximizes his/her utility, and the analyst treats utilities as 

random, it is necessary to calculate the probability that a decision-maker will choose a 

given alternative. The probability that a decision-maker chooses alternative i from the 

choice set C with J  alternatives, Pr o b (i : C ) , is given by:

Ui = Vi + £i (3.1)

V i  — f i \ X  li  +  f 3 l X  2i +  . . .  +  /3 n X n i (3.2)

P rob(i: C) = Prob (Ui > Uj Vy) =

Prob(Vi + si >Vj + sj Vy) = Prob(ej - si <Vi-Vj Vy)
(3.3)
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This is a multivariate cumulative distribution function for the differences between pairs 

of error terms.

Specific assumptions on the distribution of the s 's  lead to different model 

structures. For example, the assumption that the error terms are independent and 

identically gumbel distributed across alternatives and decision-makers leads to the 

familiar multinomial logit model developed by McFadden (1974). However, to accurately 

model many choice situations (including the scenario in this research), it is necessary to 

relax the assumption of error independence across alternatives. The generalized extreme 

value family of models proposed by McFadden (1978) allow for this. These models are 

closed-form, are consistent with random utility maximization theory and assume that 

alternative error terms have a gumbel distribution with equal variance across alternatives 

(but not necessarily independently distributed across alternatives). GEV models can be 

generated from any function G , with arguments Y, for each alternative i :

The above G  function must be non-negative, be homogeneous, approach infinity as each 

of its arguments approach infinity and have odd (even) order partial derivatives that are 

non-negative (non-positive) (McFadden 1978; Koppelman and Sethi 2000). With a GEV 

model it can be shown that the probability of an alternative (assuming the transformation 

Yi = exp(F) to ensure positive Y ), P i , is given by:

G (Yi,Y 2,...,Yj) s.t. Yi,Yi,...,Yj>0 (3.4)

(3.5)
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where G;( ) is the first derivative of G with respect to Y; and Vi is the deterministic

component of the utility of alternative i .

The parameters for a given GEV discrete choice model can be estimated using 

full-information maximum likelihood on a random or choice-based data sample. This 

yields parameter estimates that maximize the likelihood (posterior probability) of the 

observed sample choices conditional on the model. The likelihood function, L , from a 

sample of discrete choice data is given by:

* j

where the outer product is over all individuals in the sample and the inner product is over 

all alternatives in each individual’s choice set. Pjt is the probability that individual t

For computational reasons (and because maximizing the log of a function achieves the 

same solution as maximizing the function itself), the log of the likelihood function is 

usually maximized in discrete choice applications. The log-likelihood function from a 

sample of discrete choice data is given by:

The parameter estimates that maximize this log-likelihood function are obtained when the 

first derivative of the function with respect to each parameter is zero.

(3.6)

chose alternative j  and S jt- 1 if individual t chose alternative j  ( Sp = 0 otherwise).

ln(I ) = Z I > ' taf r 4 (3.7)
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3.2 DISCRETE CHOICE SCENARIO OF RESEARCH PROBLEM, DATA 
USED AND DATA AGGREGATION ISSUES

The person or group who books an air-travel itinerary is the decision-maker in the 

modeling framework of this study. The alternative sets are modeled as all itineraries 

linking directional airport-pairs for each day of the week (since for a given day of the 

week and airport-pair the itineraries linking the airports are the mutually excusive and 

collectively exhaustive choices facing air-travelers). For example, all Monday itineraries 

from Boston to Los Angeles constitute an alternative set, as do all Friday itineraries from 

Allentown to Tucson. Each itinerary in each alternative set is described by a set of 

attributes such as level-of-service, fare and departure time. Finally, it is assumed that the 

air-travel passengers being modeled choose itineraries with the intent of maximizing their 

utility.

Passenger bookings data for this research was obtained from a compilation of 

computer reservation systems (CRS). These are data sources containing detailed records 

of booked itineraries. CRS data is commercially available and compiled from several 

computer reservation systems including Sabre (Sabre Travel Network 2000, 2001), 

Galileo (Galileo International 2000, 2001) and Worldspan (Worldspan, L.P. 2000, 2001) 

as well as Internet travel sites such as Orbitz (Orbitz, L.L.C. 2000, 2001), Travelocity 

(Travelocity.com, L.P. 2000, 2001), Expedia (Expedia, Inc. 2000, 2001) and Priceline 

(Priceline.com, Inc. 2000, 2001). The CRS data is believed to include 90% of all 

domestic air-travel bookings35 during the study period. However, increasing use of direct-

35 It is assumed that the small number of bookings not captured by the CRS source have the same 
characteristics as the bookings contained in CRS. This assumption may be questionable (and hence the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

4 9

carrier bookings (via telephone and Internet) has since reduced the proportion of 

bookings reported by this source. This is likely to be an ongoing trend due to reduced 

travel agent commissions and reduced price differentials between “discount” Internet 

sites and the carriers’ own websites. The CRS data contains variables describing each 

booked itinerary such as trip origin and destination, leg(s) origin and destination, leg 

number, party size, flight number(s), leg(s) departure and arrival time(s), departure and 

arrival date, and airline.

Since the itinerary building rules employed by the different computer reservation 

systems differ to a limited degree, a major carrier’s itinerary building engine was used to 

generate the set of itineraries between all airport-pairs. This engine builds all feasible 

online itineraries (up to the double-connection level) using leg-based air-carrier schedule 

data obtained from the Official Airline Guide (OAG Worldwide Limited 2000, 2001).

The OAG data contains the following variables: operating airline, codeshare airline (if a 

codeshare leg), origin, destination, flight number, departure and arrival time, equipment, 

days of operation, leg mileage and flight time. In building the itineraries, distance-based 

circuitry logic is used to eliminate unreasonable itineraries, and minimum and maximum 

connection times are incorporated to ensure that unrealistic connections are not allowed. 

Finally, itineraries are generated for each day of the week accounting for day-of-week 

differences in service offered.

presented model results may be slightly biased) since it is likely that direct-carrier bookings contain more 
leisure bookings than the entire population of bookings.
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Because no disaggregate information is available from the individual bookings, 

individuals and groups who booked a given itinerary (for a given day-of-the-week) are 

treated as homogeneous and are summed over an entire month (to get a total passenger 

count) for each itinerary in the bookings data. The generated itineraries are merged with 

the booked itineraries to assemble the estimation datasets for this research. Because of the 

aggregate nature of the data, the log-likelihood function maximized in this research 

incorporates the frequency of the chance of each alternative. That is,

where the outer summation is over all alternative sets in the estimation data (i.e. all 

airport-pair-day-of-the-week combinations), the inner summation is over all itineraries in 

each alternative set, Ya is the total number of passengers who chose itinerary i in 

alternative set a  and Pia is the estimated probability of each passenger choosing 

itinerary i in alternative set a  . Finally, using the estimation data, aggregate GEV 

models are estimated with full-information maximum likelihood techniques using the 

GAUSS modeling software (Aptech Systems, Inc. 2005). The specific forms of the 

different models tested are described in Chapters 4 - 6 .

Even though the bookings data employed in this study is based on the choices of 

individual travelers, it does not include any information on the demographic 

characteristics of the individual that made the booking or any trip-related characteristics 

of the booking (such as income, business vs. leisure, number of days booked in advance 

of departure, duration of stay). Thus, since no individual data is available to identify

(3.8)
a
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differences among travelers, it may not be appropriate to count the full weight of the 

individual observations in calculating the statistics for the models. The most extreme 

adjustment can be accomplished by dividing the log-likelihood values for the models by 

the ratio of the number of booked passengers to the number of airport-pair, day-of-the- 

week combinations; and the parameter estimate t-statistics by the square root of this ratio. 

Intermediate adjustments that take account of the fact that individual choice behavior is 

observed can be justified as well. Statistics discussed in Chapters 5 - 6  and presented in 

Tables 5.4 -  5.5 and 6.1 -  6.2 refer to the unadjusted values as well as the values obtained 

after adjusting (according to the ratio described above) due to the aggregate nature of the 

data.
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CHAPTER 4: MODELING THE IMPACT OF SERVICE CHARACTERISTICS 
ON AIR-TRAVEL ITINERARY SHARE USING THE MULTINOMIAL LOGIT 
MODEL

In this chapter, the quantitative relationship between air-travel service 

characteristics and itinerary share is determined via estimation of aggregate multinomial 

logit models.

4.1 INTRODUCTION

An important motivation for developing itinerary share models is to gain an 

understanding of the impact of different service factors on itinerary share. Researchers, 

policy-makers and air-carriers can use this information. As one example, information 

about passenger departure time preferences can be used by policy makers to better 

allocate slots at slot-controlled airports, while carriers can take advantage of this 

information to better match their schedule offerings with customer departure time 

preferences.

In this chapter, aggregate MNL models are developed to model itinerary shares 

for each domestic36 airport-pair in the United States. The itinerary attributes modeled are 

level-of-service, connection quality, carrier attributes, aircraft size and type, and 

departure time. Factors not directly modeled -  though discussed -  include elapsed 

itinerary travel time, carrier frequent flyer program effectiveness and service quality.

4.2 MODELING FRAMEWORK

The United States was divided into five regions: each Continental time zone 

(East, Central, Mountain, West) and a region for Alaska and Hawaii. Using these regions,

52
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eighteen “entities” were defined: all sixteen combinations of the Continental time 

zones (East-East (E-E), East-Central (E-C), East-Mountain (E-M), East-West (E-W), 

West-West (W-W)), as well as an entity for Alaska and Hawaii to the Continental U.S. 

and an entity for the Continental U.S. to Alaska and Hawaii37.

Using January 2000 data, aggregate multinomial logit models were estimated for 

each of these entities with a common specification using data from all airport-pairs in the 

respective entity. Under MNL model assumptions, it can be shown that the market share 

of passengers assigned to each itinerary between an airport-pair for a given day of the 

week is given by the following equation:

(4-»Z,exP vj)
j e j

where Si is the passenger share assigned to itinerary i ,
exp ( ) is the exponential function,
Vi is the value (deterministic portion of utility) of itinerary i and 
the summation is over all itineraries for the airport-pair-day-of-the week.

The independent variables used in these models are described in Table 4.1.

36 Mexico-to-U.S. (and vice versa) and Canada-to-U.S. (and vice versa) airport-pairs are also included in 
the analysis.
37 Airport-pairs within Hawaii or Alaska, and between Hawaii and Alaska were excluded from the analysis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

5 4

TABLE 4.1: Description of Explanatory Variables

Variable Description

Level-of-Service Dummy variable representing the level-of-service o f  the itinerary (nonstop, direct, single
connect or double-connect) with respect to the best level-of-service available in the airport- 
pair.

Second-Best Connection For connection itineraries sharing a common leg, a dummy variable indicating that the 
itinerary is not the best connection (with respect to ground time) for the given incoming or 
outgoing leg at a transfer airport.

Second-Best Connection Time If  the second-best connection indicator equals one, this variable measures the ground time
Difference difference between the itinerary and the best connection itinerary.

Best Connection Time Elapsed time difference between an itinerary involving a stop or connection and the fastest
Difference itinerary involving a stop or connection for each airport-pair independent o f  transfer airport.

Distance Ratio Itinerary distance divided by the shortest itinerary distance for the airport-pair multiplied by 
100.

Point o f  Sale W eighted Airport Carrier origin and destination presence (determined by percentage o f  departures) weighted by
Presence industry airport-pair point-of-sale percentages divided by 100 to give units o f  percent from 0 

to 100.

Fare Ratio Carrier average fare divided by the industry average fare for the airport-pair multiplied by 100.

Carrier Dummy variable representing carriers having more than 0.5% o f itineraries in the entity. All 
other carriers are combined together in a single category.

Code share Dummy variable indicating whether any leg o f  the itinerary was booked as a code share.

Regional Jet Dummy variable indicating whether the smallest aircraft on any part o f  the itinerary is a 
regional jet.

Propeller Aircraft Dummy variable indicating whether the smallest aircraft on any part o f  the itinerary is a 
propeller aircraft.

Mainline Jet Seats If an itinerary involves neither a regional je t  nor a propeller aircraft leg, this variable measures 
the num ber o f  seats on the smallest aircraft for the itinerary.

Regional Jet Seats If an itinerary includes a regional je t  leg (but no propeller aircraft leg), this variable measures 
the number o f  seats on the smallest regional je t aircraft for the itinerary.

Propeller A ircraft Seats If an itinerary includes a propeller aircraft leg, this variable measures the number o f  seats on 
the smallest propeller aircraft for the itinerary.

Departure Time Dummy variable for each hour o f  the day (based on the local departure time o f  the first leg o f 
the itinerary).
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Estimation results for five entities (the entities originating in the Eastern time 

zone and the West-East entity) are reported in this chapter38. Table 4.2 reports some 

summary statistics for these entities and shows the scope of the data used in the 

estimations. The passenger number is the number of people who booked an itinerary to 

travel in the entity during the month. The especially large numbers for the East-East 

entity reflect the busy East Coast travel corridor.

TABLE 4.2: Summary Statistics for Five Entities

Entity Airport-Pairs Itineraries Booked Passengers

East-West
East-Mountain
East-Central
East-East
West-East

2,294
1,809
6,755

11,147
2,293

559,073
276,032

1,034,861
1,669,354

476,664

1,128,916
419,392

2,002,554
5,861,742
1,143,671

A more intuitive description of the data is obtained by summarizing the itineraries 

in an alternative set along different service characteristic dimensions. Tables 4.3 - 4.5 

show the distribution of itineraries and passengers for Monday itineraries linking Boston 

and Los Angeles for January 2000 according to level-of-service, carrier and departure 

time, respectively. Table 4.3 shows that, as expected, the nonstop itineraries in this 

market captured the majority of passengers. Direct itineraries attracted a small but not 

insignificant number of passengers. Single-connection itineraries captured a modest
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number of passengers in total but very few passengers per itinerary, and no passengers 

booked a double-connection itinerary. This is not surprising since both nonstop and direct 

service was available in this market. Table 4.4 reports that American Airlines and United 

Airlines captured the majority of passengers for this alternative set. Not coincidentally, 

these are the only carriers who offered nonstop service in this market (four nonstop 

flights each). Other airlines carried a much smaller number of passengers via connections 

through their respective hubs. Finally, Table 4.5 shows the distribution of passengers and 

itineraries by departure time. Note the large fraction of passengers who boarded during a 

one-hour morning and a one-hour afternoon peak period.

TABLE 4.3: Monday Boston -  Los Angeles Itineraries by Level-of-Service

Level-of-Service Itineraries Booked Passengers Average Number of 
Booked Passengers 

per Itinerary
Nonstop 8 2,009 251.1
Direct 5 104 20.8
Single-Connect 249 402 1.6
Double-Connect 61 0 0.0
Total 323 2,515 7.8

38 Similar results were obtained for the other thirteen entities.
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TABLE 4.4: Monday Boston -  Los Angeles Itineraries by Carrier

Carrier Itineraries Booked Passengers
American Airlines 62 1,210
United Airlines 75 865
U.S. Airways 24 102
Trans World Airlines 14 70
Continental Airlines 30 69
America West Airlines 15 67
Delta Airlines 48 53
Northwest Airlines 22 39
Air Canada 4 0
Other 29 40
Total 323 2,515

TABLE 4.5: Monday Boston -  Los Angeles Itineraries by Departure Time

Departure Time Itineraries Booked Passengers
Midnight-5 A.M. 0 0
5-6 A.M. 5 9
6-7 A.M. 30 18
7-8 A.M. 29 67
8-9 A.M. 30 744
9-10 A.M. 17 50
10-11 A.M. 24 13
11-12 Noon 29 410
12-1 P.M. 17 59
1-2 P.M. 30 237
2-3 P.M. 21 27
3-4 P.M. 31 292
4-5 P.M. 16 1
5-6 P.M. 26 544
6-7 P.M. 8 4
7-8 P.M. 8 20
8-9 P.M. 1 2
9-10 P.M. 1 18
10-12 Midnight 0 0
Total 323 2,515
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4.3 THE IMPACT OF SERVICE CHARACTERISTICS ON ITINERARY 
SHARE

The parameter estimates for the five models are reported in Table 4.639. These 

estimates can be interpreted in terms of the impact of a variable value change on the 

value of the alternative and its market share. Further, each model can be evaluated in 

terms of the implied importance of its variables and its statistical significance.

4.3.1 THE IMPACT OF LEVEL-OF-SERVICE ON ITINERARY SHARE

The estimation results presented here provide strong evidence of the importance 

of level-of-service on itinerary share. All parameter estimates for level-of-service, 

relative to the best level-of-service for the airport-pair40, are large, negative and 

significant. The magnitude of preference among levels-of-service indicates that each 

reduction in level-of-service from the best available substantially reduces the value of the 

associated itinerary. These results provide evidence that passengers strongly prefer to 

avoid connections presumably due to their increased elapsed travel time, the 

inconvenience of switching planes, higher probability of delays, increased potential for 

lost baggage, etc.

The magnitude and relative differences among the level-of-service parameter 

estimates is very similar across these five entities. This result supports the idea that air 

passengers are similarly sensitive to differences in level-of-service across the entire 

domestic system.

39 All parameter estimates in this table significant at the 0.05 level.
40 Each airport-pair has a best level-of-service. For example, Boston -  Los Angeles has nonstop 
service. Therefore, it is a “nonstop market”. However, the best level-of-service linking many 
airport-pairs is a single or even double connection.
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TABLE 4.6: Itinerary Share Models

Explanatory Variables E-E E-C
Entity

E-M E-W W-E
Level-of-Service
Nonstop Itinerary in Nonstop Market41 0.0000 0.0000 0.0000 0.0000 0.0000
Direct Itinerary in Nonstop Market -1.6819 -1.5253 -1.7168 -1.6615 -1.5349
Single-Connect Itinerary in Nonstop Market -3.1213 -2.8760 -2.7087 -2.9729 -2.8858
Double-Connect Itinerary in Nonstop Market -7.7557 -7.2970 -7.5112 -7.2130 -6.5395
Direct Itinerary in Direct Market 0.0000 0.0000 0.0000 0.0000 0.0000
Single-Connect Itinerary in Direct Market -0.7901 -0.7768 -1.0989 -1.0615 -0.9847
Double-Connect Itinerary in Direct Market -4.9442 -4.5565 -4.3308 -4.4475 -4.5869
Single-Connect Itinerary in Single-Connect Market 0.0000 0.0000 0.0000 0.0000 0.0000
Double-Connect Itinerary in Single-Connect Market -3.0953 -3.1205 -2.5431 -2.8209 -2.7105
Connection Quality
Second-Best Connection -0.5560 -0.5058 -0.5322 -0.7269 -0.4377
Second-Best Connection Time Difference -0.0157 -0.0190 -0.0178 -0.0162 -0.0180
Best Connection Time Difference -0.0108 -0.0094 -0.0093 -0.0104 -0.0088
Distance Ratio -0.0125 -0.0116 -0.0210 -0.0173 -0.0207
Carrier Attributes
Point o f  Sale W eighted Airport Presence 0.0024 0.0100 0.0078 0.0071 0.0077
Fare Ratio -0.0018 -0.0038 -0.0045 -0.0035 -0.0040
Carrier Constants
Code share -1.5911 -2.1255 -1.9220 -2.1658 -2.2082
Aircraft Size and Type
M ainline Jet 0.0000 0.0000 0.0000 0.0000 0.0000
Regional Jet -0.7046 -0.8317 -0.8844 -0.7079 -0.4110
Propeller Aircraft -1.2420 -1.0599 -0.8081 -0.9988 -0.9269
Mainline Jet Seats 0.0041 0.0037 0.0047 0.0032 0.0036
Regional Jet Seats 0.0117 0.0101 0.0144 0.0080 0.0052
Propeller Aircraft Seats 0.0246 0.0146 0.0157 0.0184 0.0212
Departure Time
Midnight - 5 A.M. -1.1653 -1.1577 -1.2341 -1.2037 -0.7228
5 - 6  A.M. -0.4653 -0.4577 -0.5341 -0.5037 0.1482
6 - 7  A.M. 0.0000 0.0000 0.0000 0.0000 0.0000
7 - 8  A.M. 0.2865 0.2693 0.2179 0.2297 0.0570
8 - 9  A.M. 0.2836 0.4130 0.3983 0.3168 0.2354
9 - 1 0  A.M. 0.2046 0.3204 0.4156 0.3413 0.0311
1 0 - 1 1  A.M. 0.1219 0.2571 0.4539 0.3425 0.0592
1 1 - 1 2  noon 0.1022 0.2539 0.3842 0.2670 0.0196
1 2 - 1  P.M. 0.1452 0.3137 0.4252 0.2977 0.0570
1 -  2 P.M. 0.1732 0.3676 0.2298 0.2594 0.0219
2 - 3  P.M. 0.2622 0.4742 0.1964 0.2462 -0.0988
3 -  4 P.M. 0.3438 0.5254 0.2136 0.2557 0.1175
4 - 5  P.M. 0.4230 0.5853 0.2476 0.2097 0.0873
5 - 6  P.M. 0.4667 0.5959 0.2419 0.2324 0.1779
6 - 7  P.M. 0.4054 0.5516 0.2491 0.1889 -0.2437
7 - 8  P.M. 0.2047 0.4627 -0.0099 0.0472 0.2914
8 - 9  P.M. -0.0362 0.0866 -0.0984 -0.2243 0.1417
9 -  10 P.M. -0.3565 -0.2917 -0.6878 -0.3924 0.0541
10 -  Midnight -0.6468 -0.7454 -0.7637 -0.3170 -0.0573
Rho-square w.r.t. Zero 0.377 0.369 0.372 0.396 0.385

41 “Nonstop Market” means the “best” level-of-service available in the airport-pair is a nonstop itinerary, 
“Direct Market” means the best level-of-service available in the airport-pair is a direct itinerary, etc.
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4.3.2 THE IMPACT OF CONNECTION QUALITY ON ITINERARY SHARE

Several variables in the models measure the relative passenger preference for and 

quality of itineraries involving connections (in addition to the level-of-service variables). 

The results indicate that travelers making a connection strongly prefer the best connection 

(shortest ground time) among itineraries sharing a common leg at a transfer station. The 

models include two variables to measure the impact of second-best connection itineraries: 

the “second-best connection” and “second-best connection time difference” variables. 

Figures 4.1 and 4.2 show visual representations of two types of second-best connections. 

Both figures show Boston to Los Angeles single-connect itineraries with ORD (Chicago) 

as the connecting station and time represented along the vertical axis. The #123 -  #789 

connection is a “second-best connection” in both figures.

In addition, passengers compare all connections linking an airport-pair (possibly 

involving different connecting airports) with respect to elapsed time (flight plus ground 

time) differences. The “best connection time difference” variable captures passenger 

aversion to both excess ground and flight time. The magnitude of this parameter is 

approximately 1/2 to 2/3 of the “second-best connection time difference” parameter 

estimate suggesting that the comparison between connecting itineraries sharing a 

common leg carries more importance than the comparison across different routings.

A related comparison of itinerary connection quality is the ratio of each itinerary’s 

distance to that of the shortest itinerary distance for the airport-pair (“distance ratio” 

variable). The parameter estimates for this variable were negative in all of the models 

indicating that circuitous itineraries have lower value than more direct itineraries.
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4.3.3 IMPACT OF CARRIER PRESENCE, FARES AND CARRIER ON 
ITINERARY SHARE

Carrier market presence can be represented as the amount of service provided in 

the airport-pair (nonstop frequency for example) or as a function of the carrier’s overall 

presence in the origin and/or destination airports (percentage of departures for example). 

Several functional forms of carrier presence were experimented with in the models. The 

specification yielding the most reasonable results was the “point of sale weighted airport 

presence” variable included in the present models. The parameter estimates for this 

variable are positive matching a priori expectations since increased presence at an airport 

allows a carrier to offer passenger’s greater frequencies and more destinations. 

Additionally, increased carrier presence provides marketing opportunities and enables 

carriers to attract more frequent flyer customers.

Itineraries with higher fares have a lower value than lower-cost itineraries (other 

things being equal). Fare data for models estimated in this dissertation was obtained from 

the “Superset” data source (Data Base Products, Inc. 2000, 2001). The parameter 

estimates for the “fare ratio” variable in the models are negative as expected. Though the 

fare data employed is superior to other revealed preference aviation demand studies, it is 

important to recognize that the data is based on averages for each carrier across all 

itineraries for each airport-pair. Detailed fare data for specific itineraries and ticket 

classes was not available for this research.

Carrier (represented by dummy variables in the models) is an important 

component of itinerary choice. These variables capture the many influences that a
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carrier’s image has on itinerary choice such as marketing effectiveness, frequent flyer 

program quality, food quality, safety record, on-time performance, propensity to 

overbook, baggage handling record, flight crew friendliness, etc. These parameter 

estimates are all highly significant and (for a given carrier) varied greatly across the 

entities reflecting differences in a carrier’s quality of service and image in different 

entities. The carrier-specific constants have been suppressed from Table 4.6 for 

proprietary reasons. However, exclusion of these parameter estimates does not impact the 

behavioral interpretation of the models.

4.3.4 IMPACT OF AIRCRAFT SIZE AND TYPE ON ITINERARY SHARE

Clearly, the type(s) of aircraft used on an itinerary and the number of seats offered 

on these aircraft types affects the value of the itinerary. The estimation results confirm 

the belief that passengers prefer large (mainline) jets to regional jets to propeller aircraft 

due to their increased speed, more comfortable cabins and higher perceived levels of 

safety. Also, passengers prefer larger aircraft to smaller aircraft (within an aircraft type). 

Figure 4.3 shows the contribution of aircraft type and number of seats to itinerary value 

for the East-East entity displaying typical aircraft sizes of 15-40 for propeller aircraft, 50- 

80 for regional jet aircraft and 100+ for mainline aircraft. Value is determined by 

applying the appropriate equipment variable and the corresponding seats variable. 

Passenger sensitivity to an increase in aircraft size is particularly strong for smaller 

aircraft.
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FIGURE 4.3: Contribution of Aircraft Size and Type to Itinerary Value for the East-East 
Entity

4.3.5 IMPACT OF DEPARTURE TIME ON ITINERARY SHARE

The five entities displayed in Table 4.6 show distinctly different preference 

patterns for departure time. However, in all cases early morning (before 7 A.M.) and late 

evening (after 8 P.M.) itineraries are generally not preferred. Complete interpretation of 

these parameter values depends on the flight schedules supplied in each entity. A 

negative parameter indicates that the time period is not preferred after taking account of 

less frequent flight offerings during the period. These departure time-of-day preferences 

reflect different origin and destination constraints across entities. For example, itineraries 

departing after 8 P.M. have a higher preference in the West-East entity than the 

westbound entities. This is a result of these travelers taking advantage of “red eye” 

itineraries allowing them to arrive on the East Coast early the following morning.
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4.3.6 IMPACT OF ELAPSED TIME, FREQUENT FLYER PROGRAM 
EFFECTIVENESS AND SERVICE QUALITY ON ITINERARY SHARE

Elapsed itinerary trip time was not included in the models presented in this 

dissertation because it did not yield significant parameter estimates. This is due, 

primarily, to the other variables in the model specification that indirectly measure elapsed 

time. These include the level-of-service indicators, the connection quality variables 

(second-best connection variables, best connection time difference, distance ratio) and the 

aircraft size and type variables.

Due to data unavailability, the impact of frequent flyer programs and service 

quality (e.g. on-time performance, baggage handling record, overbooking rates) on 

itinerary share were not explicitly modeled in this research. However, it is believed that 

the carrier constants included in the presented models capture many of the service quality 

effects as well as the attractiveness of a given carriers frequent flyer program.

4.4 VALIDATION

The full set of eighteen logit-based models was implemented as a component of a 

major U.S. carrier’s itinerary share model. For a given month, validation was undertaken 

by allocating demand to itineraries between each airport-pair and assigning the itinerary- 

level demand to the flight-segments that define each itinerary. For each of the carrier’s 

segments the total number of forecasted passengers was compared to onboard passenger 

count data. Absolute errors were averaged across segments and compared to predictions 

using the carrier’s previous QSI-based itinerary share model for the twelve months of 

1999, August 2001, March 2002 and May 2002.
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The results, reported in Table 4.7, are consistently superior for the logit-based 

models for every month based on model estimation from a single month (January 2000). 

This suggests very good model stability from month to month. Note that similar results 

were obtained when validation was applied to the selected months in 2002; that is, even 

including months after the September 11th, 2001 terrorist attacks.
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TABLE 4.7: Onboard Segment-Level Model Validation Analysis (Mean Absolute 
Percentage Deviation)

Month QSI-Based Model Logit-Based Model Difference
January 1999 19.52 17.91 1.61
February 1999 18.98 17.21 1.77
March 1999 18.40 16.48 1.92
April 1999 17.31 15.94 1.37
May 1999 17.22 16.23 0.99
June 1999 18.33 16.87 1.46
July 1999 16.70 14.91 1.79
August 1999 16.41 14.57 1.84
September 1999 17.77 15.93 1.84
October 1999 18.13 15.66 2.47
November 1999 16.14 14.42 1.72
December 1999 19.28 17.73 1.55
August 2001 17.47 15.79 1.68
March 2002 17.91 16.14 1.77
May 2002 19.08 17.73 1.35
Average 17.91 16.23 1.68

4.5 SUMMARY AND CONCLUSIONS

This chapter studies the influence of various service attributes on itinerary share. 

Eighteen aggregate multinomial logit models are developed, each covering a major 

region-to-region (or intra-region) of the United States. The development of these models 

provides a better understanding of the relative importance of different service factors on 

itinerary share compared to previous studies.

Detailed analysis is performed on the relative importance of itinerary level-of- 

service, connection quality, aircraft type and size, departure time, carrier presence, fares 

and carrier on itinerary share. The parameter estimates for all of these itinerary 

characteristics have an intuitive interpretation and are consistent over all eighteen entities.
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Validation results using a major U.S. carrier’s onboard segment-level data consistently 

favor the logit-based models relative to previously used QSI-based models.

Additionally, itinerary service attributes controllable by a carrier to improve 

market share are clearly identified. Among these, the most important are the provision of 

higher levels of service (more nonstop and direct itineraries) suggesting the potential 

market value of moving away from the dominant hub-and-spoke network structure of the 

major legacy carriers, flying mainline jets, matching service offerings with customer 

departure time preferences, optimizing connection times and maintaining a substantial 

presence in primary markets.
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CHAPTER 5: MODELING THE UNDERLYING COMPETITIVE DYNAMIC 
AMONG AIR-TRAVEL ITINERARIES WITH NESTED LOGIT MODELS

5.1 INTRODUCTION

Chapter 4 modeled itinerary shares using aggregate multinomial logit functions of 

the itineraries’ attributes. MNL models are adequate for describing the impact of service 

attributes on airport-pair itinerary share. However, the across-itinerary independence of 

the itinerary error terms (inherent in the derivation of the MNL model structure) implies 

that all itineraries “compete” equally with each other for a given airport-pair-day-of-the- 

week. That is, the underlying competition among air-travel itineraries is assumed to be 

“uniform” when modeled with a MNL function. This is further demonstrated by a well- 

known property of MNL models, the independence of irrelevant alternatives (IIA) 

property, which states that the relative probabilities of any pair of itineraries are 

independent of the attributes (or even the presence) of any other itineraries. This can be 

seen mathematically by looking at the ratio of MNL probabilities for two itineraries, i 

and j :

exp(L)

P  g e x > ( * )  e x p W

Pj exp(P/) exp(L)
£  exp {Vk)
ks K

which is only a function of the itineraries i and j  . The IIA property of the MNL model 

is also apparent by examining the cross-elasticity equation for the change in the 

probability of itinerary j  due to changes in an attribute of itinerary / :

69
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where Xik is the value of itinerary Vs k th attribute and [5 k is attribute k 's  parameter 

estimate. Note that the expression on the right side is not a function of j  . That is, 

changing an attribute of itinerary i affects all other itineraries in the same proportion.

The central hypothesis of this chapter is that the underlying competition among 

air-travel itineraries for a given airport-pair and day-of-the-week is not uniform. Rather, it 

is asserted that groups of itineraries sharing one or more common attributes will exhibit 

more competition (as measured by cross-elasticities) amongst themselves than with 

itineraries not sharing these attributes.

Generalized extreme value models allow for the possibility of correlation between 

error terms for groups of alternatives (McFadden 1978; Koppelman and Sethi 2000) and 

permit the estimation of differential alternative competition measurements 

simultaneously with the value function parameters. This allows for flexible and 

complicated inter-altemative competition dynamics to be modeled. Using aggregate GEV 

(in particular, variations of the NL model) itinerary share models, this chapter measures 

the differential inter-itinerary competition dynamics that are hypothesized to exist among 

groups of air-travel itineraries.

In this chapter and Chapter 6 it is hypothesized that the competition among air- 

travel itineraries is differentiated by proximity in departure time, carrier, level-of-service
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or a combination of these dimensions42. Clearly, itineraries with similar departure 

times share unobserved characteristics that air-travelers consider in their itinerary 

selection process. For example, it is likely that air-travelers have desired departure times 

and consider groups of itineraries with departure times that are close to their desired 

departure times. That is, if an air-traveler desires to depart in the early morning, he/she 

will compare/contrast the attributes of different early-moming itineraries more closely 

than afternoon or evening itineraries. Thus, itineraries within a given time period are 

likely to compete with each other more than with itineraries in a different time period. 

Similarly, it is likely that itineraries of a given carrier compete more with each other than 

with itineraries of different carriers due to loyalty factors including frequent flyer 

program affiliations. Finally, it is believed that itineraries with the same level-of-service 

share many unobserved characteristics that differentiate them from itineraries with 

different levels-of-service. For example, (by definition) single-connect itineraries involve 

one stopover with a change of airplane43. Therefore, for a given airport-pair, the error 

terms for itineraries of a given level-of-service are likely to be correlated (resulting in 

greater substitutability between the itineraries than with itineraries of different levels-of- 

service).

Section 5.2 outlines the modeling framework for this chapter and Chapter 6. 

Section 5.3 presents the estimation of a “base” MNL model. Due to the belief that the

42 Other itinerary competition dynamics likely exist (e.g. the competition among fare-classes within and 
across itineraries). However, the data constraints of this dissertation do not permit these relationships to be 
explored.
43 From the travelers’ perspective this involves a layover, the inconvenience of switching planes, the 
possibility o f missing his/her connection, etc.
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competition among itineraries is differentiated by proximity in departure time, carrier 

or level-of-service, the constraints of the MNL model are then relaxed in Section 5.4 by 

estimating two-level nested logit models. These models permit itineraries to be grouped 

(nested) by departure time, carrier or level-of-service. In addition to the value function 

parameter estimates, these models also contain an inverse logsum parameter44 

representing the level of itinerary competition within nests. For a given two-level NL 

model, the estimated value of the inverse logsum parameter (along with the overall model 

fit) indicates whether it is valid to group the itineraries according to the selected nesting 

structure (i.e. whether increased competition exists among itineraries in the nests, 

therefore rejecting the MNL model).

It is likely that the competition among air-travel itineraries is differentiated by 

proximity along more than one of the above-mentioned dimensions. To address this, a 

two-level weighted nested logit (WNL) model is formulated and estimated in Section 5.5 

combining the competitive results of different two-level NL models. This model allows 

the simultaneous consideration of parallel two-level nesting structures (each structure 

yields an inverse logsum parameter estimate indicating the amount of itinerary 

competition within the nests of that structure) with a weight parameter indicating the 

relative importance of each structure. The formulation of this model is similar to the 

principles of differentiation models developed by Bresnahan et al. (1997).

Clearly, the two-level WNL model has advantages over the more restrictive two- 

level NL model structure. However, this model cannot capture the inter-itinerary
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competition dynamic that may exist among itineraries sharing a common attribute 

within another attribute. For example, (as mentioned above) it is believed that itineraries 

sharing a common time period compete more closely with each other than with itineraries 

of different time periods. However, within these time periods it is likely that itineraries of 

the same carrier exhibit even more competition amongst themselves. As a result, Section

5.6 presents the estimations of three-level nested logit models. These models group (nest) 

itineraries at an upper-level for a given dimension, and within each upper-level nest 

group itineraries according to a second dimension (lower-level nest). In addition to the 

value function parameter estimates, these models yield upper and lower-level inverse 

logsum parameter estimates indicating the differential amount of itinerary competition 

within the upper and lower-level nests. The estimated values of these inverse logsum 

parameters (along with the overall model fit) indicate whether a three-level nesting 

specification is supported (i.e. the hypothesis that a two-level NL model is adequate to 

describe the underlying itinerary competition dynamic should be rejected).

Finally, a three-level WNL model and a nested weighted nested logit (NWNL) 

model are estimated in Sections 5.7 and 5.8, respectively. The three-level WNL model is 

a direct extension of the two-level WNL model (it simultaneously estimates parallel 

three-level structures with a weight parameter indicating the relative importance of each 

structure). The NWNL model combines properties of the three-level nested logit and 

weighted nested logit models. Both of these models are new to the literature and

44 The inverse logsum parameter is defined in Section 5.4.
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incorporate all three attribute dimensions (departure time, carrier, level-of-service) of 

interest.

All of the above mentioned models are members of the generalized extreme value 

family of models (McFadden 1978) and are shown to outperform the base MNL model 

with respect to statistical tests and behavioral interpretations, leading to a clearer 

understanding of the air-travel inter-itinerary competition dynamic.

5.2 MODELING FRAMEWORK

As mentioned above, the motivation in developing the itinerary share models of 

this chapter and Chapter 6 is to understand the underlying competitive structure of air- 

travel itineraries. Using May 2001 data, models are estimated using all airport-pairs from 

the East to the West (as determined by time zone) regions of the United States and 

Canada.

Tables 5.1 -  5.3 report the distribution of itineraries and booked passengers by 

level-of-service (Table 5.1), carrier (Table 5.2) and departure time (Table 5.3) for the 

estimation dataset. All models estimated in this chapter and Chapter 6 have a common 

specification with respect to the independent variables representing itinerary service 

characteristics45.

As discussed in Section 3.2, due to the aggregate nature of the data, the log- 

likelihood values for the models estimated in this chapter and Chapter 6 are adjusted by 

dividing by the ratio of the number of booked passengers to the number of airport-pair,

45 Some value function variables (e.g. point o f sale weighted airport presence, aircraft size) had 
insignificant or incorrect (sign) parameter estimates in the advanced models. Therefore, the value function 
specification for models contained in this chapter and Chapter 6 is simpler than that found in Chapter 4.
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day-of-the-week combinations; and the parameter estimate t-statistics by the square 

root of this ratio. For the estimation data, the log-likelihood adjustment factor is 

469, 078/ 14,893 =  31.50 ; and the t-statistic adjustment factor is

% * ( 31.50) =  5 .61 .

TABLE 5.1: Number of Itineraries and Booked Passengers by Level-of-Service for 
the East-West Region Dataset

Level-of-Service Itineraries Booked Passengers
Nonstop 3,382 144,814
Direct 3,675 17,180
Single-Connect 252,561 294,421
Double-Connect 369,504 12,663
Total 629,122 469,078

TABLE 5.2: Number of Itineraries and Booked Passengers by Carrier for the East- 
West Region Dataset

Carrier Itineraries Booked Passengers
United Airlines 133,111 93,704
American Airlines 83,497 72,642
Continental Airlines 89,805 43,070
Delta Airlines 92,968 72,124
Northwest Airlines 88,759 40,487
U.S. Airways 36,073 41,246
Other 104,909 105,805
Total 629,122 469,078

5.3 MULTINOMIAL LOGIT MODEL

The base or reference model for this chapter is the MNL model reported in Table 

5.4. The parameter estimates are reported in groups corresponding to level-of-service,
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connection quality, carrier attributes, aircraft type, and departure time variables. The 

parameter estimates for this model are very similar to the estimates from Chapter 4, 

where the interpretation of these estimates is detailed. For this chapter and Chapter 6 it is 

sufficient to state that the value function parameter estimates have the correct sign, are of 

reasonable magnitude and all are significant at the 0.05 level after adjustment.

TABLE 5.3: Number of Itineraries and Booked Passengers by Departure Time for 
the East-West Region Dataset

Departure Time Itineraries Booked Passengers
5-6 A.M. 8,099 3,327
6-7 A.M. 92,019 44,212
7-8 A.M. 64,561 53,929
8-9 A.M. 37,265 37,718
9-10 A.M. 49,586 36,629
10-11 A.M. 37,833 20,427
11-12 Noon 39,321 21,604
12-1 P.M. 48,808 26,138
1-2 P.M. 55,426 23,576
2-3 P.M. 41,574 21,535
3-4 P.M. 46,849 30,311
4-5 P.M. 44,189 32,899
5-6 P.M. 36,713 45,257
6-7 P.M. 15,687 31,565
7-8 P.M. 8,085 21,414
8-9 P.M. 2,644 11,160
9-10 P.M. 401 5,355
10-12 Midnight 62 2,022
Total 629,122 469,078
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The value function parameter estimates for the advanced models (presented in 

Tables 5.4 -  5.5) are very similar across the different model specifications46. However, in 

general, the estimates for the advanced models are smaller in magnitude than the 

corresponding estimates for the MNL model. This represents the lower sensitivity 

(substitutability) between groups of alternatives not in a common nest. The increased 

sensitivity between groups of alternatives in common nests is captured by the inverse 

logsum variables.

5.4 TWO-LEVEL NESTED LOGIT MODEL

Initial two-level nested logit estimations assumed nesting based on each of the 

three dimensions described above. In these models, itineraries are grouped into nests 

according to departure time (morning, 5:00 -  9:59 A.M.; midday, 10:00 A.M. -  3:59 

P.M; evening, 4:00 P.M. -  Midnight), carrier (six major U.S. carriers and a group of 

“other” carriers) or level-of-service (nonstop, direct, single-connect, double-connect). 

Visual representations of the two-level time NL model and the two-level carrier NL 

model are shown in Figures 5.1 and 5.2, respectively.

46 In Table 5.4, all parameter estimates significant at the 0.05 level after the adjustment procedure. In Table 
5.5, parameter estimates in bold not significant at the 0.05 level after the adjustment procedure. In both 
tables, the significance o f  value function parameter estimates is with respect to their hypothesized value of 
zero; the significance o f inverse logsum parameter estimates is with respect to their hypothesized value of  
one.
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TABLE 5.4: Itinerary Share Models: MNL, Two-Level NL’s and Two-Level 
WNL

Explanatory Variables MNL

Model
2-Level NL 

Time
2-Level NL 

Carrier
2-Levcl WNL: 
Time | Carrier

Level-of-Service
Nonstop Itinerary in Nonstop Market 0.0000 0.0000 0.0000 0.0000
Direct Itinerary in Nonstop Market -1.9595 -1.6271 -1.7798 -1.4253
Single-Connect Itinerary in Nonstop M arket -2.8371 -2.3540 -2.5695 -2.0624
Double-Connect Itinerary in Nonstop Market -6.6264 -5.4663 -5.7872 -4.6364
Direct Itinerary in Direct Market 0.0000 0.0000 0.0000 0.0000
Single-Connect Itinerary in Direct Market -0.7370 -0.6207 -0.6579 -0.5323
Double-Connect Itinerary in Direct Market -3.9250 -3.2331 -3.4217 -2.7375
Single-Connect Itinerary in Single-Connect Market 0.0000 0.0000 0.0000 0.0000
Double-Connect Itinerary in Single-Connect Market -2.6015 -2.1915 -2.3043 -1.8997
Connection Quality
Second-Best Connection -0.4208 -0.3331 -0.3216 -0.2396
Second-Best Connection Time Difference -0.0087 -0.0071 -0.0074 -0.0058
Distance Ratio -0.0135 -0.0109 -0.0131 -0.0103
Best Connection Time Difference -0.0056 -0.0047 -0.0051 -0.0041
Carrier Attributes
Fare Ratio -0.0060 -0.0052 -0.0039 -0.0033
Carrier Constants (Proprietary)
Code share -1.8601 -1.5241 -1.6861 -1.3383
Aircraft Type
Mainline Jet 0.0000 0.0000 0.0000 0.0000
Regional Jet -0.4560 -0.3856 -0.4225 -0.3464
Propeller Aircraft -0.4201 -0.3496 -0.3658 -0.2919
Departure Time
5 - 6  A.M. -0.2184 -0.1931 -0.2084 -0.1814
6 - 7  A.M. 0.0000 0.0000 0.0000 0.0000
7 - 8  A.M. 0.1385 0.1118 0.1235 0.0964
8 - 9  A.M. 0.2381 0.1907 0.2150 0.1663
9 -1 0  A.M. 0.2646 0.2135 0.2365 0.1848
1 0- 11 A.M. 0.2672 0.1873 0.2412 0.1619
1 1 - 1 2  noon 0.2290 0.1643 0.2168 0.1507
1 2 - 1  P.M. 0.2476 0.1761 0.2293 0.1593
1 - 2  P.M. 0.1614 0.1043 0.1507 0.0956
2 - 3  P.M. 0.1686 0.1058 0.1599 0.0982
3 - 4  P.M. 0.1856 0.1219 0.1709 0.1100
4 - 5  P.M. 0.0960 0.0486 0.0934 0.0523
5 - 6  P.M. 0.0972 0.0490 0.0840 0.0429
6 - 7  P.M. 0.1760 0.1179 0.1535 0.1007
7 - 8  P.M. 0.0833 0.0443 0.0857 0.0502
8 - 9  P.M. -0.0803 -0.0807 -0.0563 -0.0541
9 - 1 0  P.M. -0.2587 -0.2243 -0.2131 -0.1778
10 -  Midnight -0.3407 -0.3179 -0.2847 -0.2546
Inverse Logsum  Parameter (Time) 1.2244 1.5435
Inverse Logsum Parameter (Carrier) 1.1768 1.4519
W NL W eight Parameter (Time Structure) 0.5364
Log Likelihood at Zero -2,173,197 -2,173,197 -2,173,197 -2,173,197
Log Likelihood at Convergence -1,558,186 -1,557,443 -1,556,663 -1,555,632
Ad justed Log Likelihood at Convergence -49,466 -49,443 -49,418 -49,385
Rho-square w.r.t. Zero 0.2830 0.2833 0.2837 0.2842
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TABLE 5.5: Itinerary Share Models: Three-Level NL’s, Three-Level WNL and 
NWNL

Explanatory Variables
3-Level NL: 
Time, LOS

Model 
3-Level NL: 

Time, Carrier
3-Level WNL: 

T|C, T|L
NWNL

Level-of-Service
Nonstop Itinerary in Nonstop Market 0.0000 0.0000 0.0000 0.0000
Direct Itinerary in Nonstop Market -1.6479 -1.6570 -1.6754 -1.6833
Single-Connect Itinerary in Nonstop Market -2.3401 -2.3802 -2.3703 -2.3655
Double-Connect Itinerary in Nonstop Market -5.5099 -5.2215 -5.2649 -5.2761
Direct Itinerary in Direct Market 0.0000 0.0000 0.0000 0.0000
Single-Connect Itinerary in Direct Market -0.5935 -0.6362 -0.6096 -0.5982
Double-Connect Itinerary in Direct Market -3.2467 -3.1347 -3.1467 -3.1465
Single-Connect Itinerary in Single-Connect Market 0.0000 0.0000 0.0000 0.0000
Double-Connect Itinerary in Single-Connect Market -2.2118 -2.1679 -2.1869 -2.1922
Connection Quality
Second-Best Connection -0.3290 -0.2504 -0.2473 -0.2449
Second-Best Connection Time Difference -0.0071 -0.0063 -0.0062 -0.0062
Distance Ratio -0.0108 -0.0112 -0.0111 -0.0110
Best Connection Time Difference -0.0047 -0.0049 -0.0048 -0.0048
Carrier Attributes
Fare Ratio -0.0051 -0.0036 -0.0036 -0.0035
Carrier Constants (Proprietary)
Code share -1.5082 -1.5408 -1.5257 -1.5179
Aircraft Type
Mainline Jet 0.0000 0.0000 0.0000 0.0000
Regional Jet -0.3827 -0.4019 -0.3985 -0.3961
Propeller Aircraft -0.3459 -0.3294 -0.3258 -0.3233
Departure Time
5 - 6 A.M. -0.1925 -0.2152 -0.2139 -0.2127
6 - 7 A.M. 0.0000 0.0000 0.0000 0.0000
7 - 8 A.M. 0.1099 0.1163 0.1146 0.1136
8 - 9 A.M. 0.1880 0.1944 0.1918 0.1902
9 -10 A.M. 0.2108 0.2148 0.2125 0.2109
10- 11  A.M. 0.1850 0.1971 0.1950 0.1933
11 - 12 noon 0.1625 0.1808 0.1791 0.1777
1 2 - 1 P.M. 0.1740 0.1845 0.1824 0.1810
1 - 2 P.M. 0.1029 0.1152 0.1140 0.1132
2 - 3 P.M. 0.1045 0.1175 0.1163 0.1155
3 - 4  P.M. 0.1199 0.1328 0.1309 0.1299
4 - 5 P.M. 0.0455 0.0577 0.0550 0.0535
5 - 6  P.M. 0.0457 0.0383 0.0355 0.0340
6 - 7 P.M. 0.1139 0.1068 0.1032 0.1013
7 - 8 P.M. 0.0416 0.0546 0.0521 0.0507
8 - 9 P.M. -0.0818 -0.0586 -0.0599 -0.0607
9 - 1 0  P.M. -0.2234 -0.1982 -0.1973 -0.1965
10 — Midnight -0.3161 -0.2821 -0.2807 -0.2802
Upper-Level Inverse Logsum Parameter (Time) 1.2124 1.0667 1.0594 1.0584
Lower-Level Inverse Logsum Parameter (Carrier) ------ 1.3568 1.3642 1.3637
Lower-Level Inverse Logsum Parameter (LOS) 1.2376 1.5492 1.7650
W eight Parameter (Time|Carrier Structure) 0.9529 0.9490
Log Likelihood at Zero -2,173,197 -2,173,197 -2,173,197 -2,173,197
Log Likelihood at Convergence -1,557,435 -1,554,227 -1,554,219 -1.554,210
Adjusted Log Likelihood at Convergence -49,442 -49,341 -49,340 -49,340
Rho-square w.r.t. Zero 0.2833 0.2848 0.2848 0.2848
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10:00 A.M -3:59 P.M. 4:00-11X9 P.M.5:00-9X9 A.M.

FIGURE 5.1: Two-Level NL Time Model Structure

V,̂
FIGURE 5.2: Two-Level NL Carrier Model Structure
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For the two-level NL models estimated in this chapter, the total variance of the

n 1itinerary error terms is set equal to —  as is commonly done in GEV models. The error

term for each itinerary is decomposed into two components: an independent component 

specific to the itinerary and a component common to all itineraries in its nest. That is,

Ui = Vi + £i + £c (5.3)

7T2
where the error variance for the independent component is given by — -  ( / / i s  the

6jU

inverse of the logsum parameter47) and the error variance for the common component is 

/  \

given by
2

7 1 i - T 2

J

. The inverse logsum parameter must be greater than one to

V

ensure that the independent component variance is smaller than the total variance. Inverse 

logsum parameter estimates can be interpreted as indicating the amount of “competition” 

among itineraries sharing a common nest with larger values indicating a higher level of 

substitution within nests. This is because a larger inverse logsum implies that more of the 

total error variance is associated with the common error term (that is, itineraries sharing a 

nest with a large inverse logsum parameter have a high level of correlation). Assuming
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this alternative error term structure and random utility maximization, it can be shown 

that with a two-level nested logit specification the share of passengers assigned to each 

itinerary between an airport-pair for a given day of the week is given by:

exp
S t = S H. x S > .

M
r_

ex

Z exP
n 'e N

I '
- r ,

KM .

x
p  (juVi)

Z e x p  ( M )
(5.4)

where S i is the passenger share assigned to itinerary i ,

S n, is the passenger share assigned to nest n ,

St is the passenger share assigned to itinerary i given nest n ,
48/ /  is the inverse logsum parameter associated with the nests ,

T n  =  In J ^ e x p  (juVf)
\ i ' e N n

Vi is the value of itinerary i .

and

The increased competition among itineraries sharing a common nest can be seen 

from cross-elasticity formulas gotten from the two-level NL model. The cross-elasticity

equation for the change in the probability of alternative j  due to changes in the k th

attribute of alternative i (where i and j  belong to the same nest) is given by:

n Q 147 In many other studies the error variance for the independent component is given by -----------, where the
6

logsum parameter is represented by 0  and must be less than one. In the current derivation, f l , the inverse 

1
logsum, is equal to — leading to identical results. 

0
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Pi _ dPj Xik 
Pj

P ( i \ n ' ) f i k X i k [ p ( n ' )  +  ( f i - 1)] (5.5)

where P(i \n ' )  is the probability of itinerary i given nest n ' , P(n ')  is the probability of

nest n ' and jU is the inverse logsum parameter. Alternatives not sharing a common nest

have cross-elasticities of the same form as the MNL model (however, there may be 

differences in the magnitude of the value function parameters between the MNL and NL 

model). The cross-elasticities for alternatives sharing a common nest in the two-level NL 

model are larger in magnitude than the cross-elasticities for alternatives that do not share 

a common nest. This is shown below:

The above inequalities hold since // must be greater than or equal to one. The higher the 

value of i i , the more sensitive itineraries are to attribute changes in other itineraries 

sharing a common nest.

The estimation results for two-level NL models with itineraries nested by

common time period and itineraries flown by the same carrier have common attributes 

that passengers consider in their itinerary selection process. These models reject the 

hypothesis that the MNL model is the true model at the 0.001 level after adjustment. On

PipkXik\ < |-P (i | n ') pkXik [P (n ’) + ( / / - 1)] 

Pi< P(i \n ' )[P(n ')  + (jU-l)]

Pi<Pi + P ( i \n ' ) ( ju - l )

(5.6)

departure time and carrier are reported in Table 5.4 showing that itineraries within a

48 Early experimental estimations yielded similar parameter estimates for the inverse logsum variables
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the other hand, grouping itineraries by level-of-service did not yield theoretically 

acceptable results (the inverse logsum parameter was estimated to be less than one, which 

is inconsistent with utility theory). This was surprising since it seems likely that an 

itinerary within a given level-of-service nest would share many characteristics with the 

other itineraries within the same nest and thus should have higher cross-elasticities 

among themselves than with itineraries of different levels-of-service.

5.5 TWO-LEVEL WEIGHTED NESTED LOGIT MODEL

The two-level weighted nested logit model simultaneously estimates parallel two- 

level nesting structures (each structure is equivalent to a two-level NL model) with a 

weight parameter indicating the relative importance of each structure. Each itinerary in 

each alternative set appears twice in the model, once in each of the parallel structures.

The WNL model can be shown to be a special case of the generalized nested logit model 

(Wen and Koppelman 2001).

Due to the strong empirical results from the two-level time and carrier NL 

models, a two-level WNL model was estimated with a time structure and a carrier 

structure (see Figure 5.3). The share of passengers assigned to each itinerary between an 

airport-pair for a given day of the week is:

across nests in each nesting dimension. Given this result and a desire for consistency across nests o f the 
same type, the inverse logsum parameter is constrained in each case to be equal across all common nests.
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(5.7)

where c represents the carrier nests, 
t represents the time nests, 
wc is the weight given to the carrier structure and 

wt = 1 — wc is the weight given to the time structure.

Estimation results for this model are reported in Table 5.4. The inverse logsum 

parameters for both the time and carrier nests are significantly greater than one (at all 

levels of significance after adjustment) indicating increased itinerary competition among 

itineraries sharing a common time period or carrier. The weight parameter is close to Vz 

and significantly different than zero or one (at all levels of significance after adjustment) 

indicating that each portion of the structure is important. Finally, this model outperforms 

both the two-level time and carrier NL models at the 0.001 level after adjustment.
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10:00 A .M .-3 :59  P.M. DL
4:00-11:59 P.M.5:00-9:59 A.M.

FIGURE 5.3: Two-Level WNL Time | Carrier Model Structure 

5.6 THREE-LEVEL NESTED LOGIT MODEL

Six three-level nested logit model specifications were estimated representing all 

possible three-level combinations for the three itinerary dimensions under study (upper- 

level time and lower-level carrier (time, carrier); carrier, time; time, level-of-service; 

level-of-service, time; carrier, level-of-service; level-of-service, carrier).

For the three-level NL models, the total variance of the itinerary error terms is 

decomposed into three components: an independent component specific to the itinerary, a 

component common to all itineraries in its lower-level nest (nest n ') and a component 

common to all itineraries in its upper-level nest (nest m '). That is,

Ui = Vi-\-Si-\-£n'-\-£m' (5.8)
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77
where the error variance for the independent component, ei , is given b y    ( ju„ is

6M„

the inverse logsum parameter for the lower-level nest), the error variance for the random 

component distinct to the lower-level nest but not including the error component of the

independent elemental alternative is given by n n ( jim is the inverse logsum

parameter for the upper-level nest), and finally the error variance for the random 

component associated with the upper-level nest but excluding the error component of the

■rr1  ^ - 27T 77lower-level nest and the elemental alternative i s ------------   . Thus, both upper and lower-
6

level inverse logsum parameters must be greater than one and the lower-level inverse 

logsum parameter must be greater than the upper-level inverse logsum parameter. The 

share of passengers assigned to each itinerary between an airport-pair for a given day of 

the week is given by:

S i = S m, x S *  , x S , ,i m n\m i\n

exp r
\ M m  J

exp

X  exp

r
1

\ X

Mm

Mn y ex

— r  ,m
\Mm y

X exp
n'& N

f  \
Mm p

ri
V Mn y

X
p ( # ,K )

X exp ( ^ )

(5.9)

where S  . is the passenger share assigned to upper-level nest m  ,

S n,|m, is the passenger share assigned to lower-level nest n' given

upper-level nest m ' ,
/Lim is the inverse logsum parameter associated with the upper-level nests,
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jun is the inverse logsum parameter associated with the lower-level 
nests,

/  \

r =ln £ e x p  ( jUnVr) and
y

r .  =ln Z  exp
\ Kn 'e N m

r  W
r \

Mn J  J

The requirement that the lower-level inverse logsum parameter be greater than the 

upper-level inverse logsum parameter implies that itineraries within the same lower-level 

nest (and hence within the same upper-level nest) share the most unobserved attributes 

and compete more closely with each other than with other itineraries. Itineraries sharing a 

common upper-level nest (but not a lower-level nest) have less competition among 

themselves than with itineraries that share the same lower-level nest, but a greater level 

of competition than with itineraries in a different upper-level nest.

Of the six three-level NL models estimated, only two satisfied the inverse logsum 

conditions described above. These models, reported in Table 5.5, are for time, level-of- 

service and time, carrier. A visual representation of the three-level time, level-of-service 

NL model is shown in Figure 5.4 and the three-level time, carrier NL model is shown in 

Figure 5.5. The time, carrier model rejects both the time and carrier two-level NL models 

at the 0.001 level after adjustment.

The time, level-of-service model does not reject the two-level time NL model 

after adjustment. However, it does improve upon the two-level NL time model before 

adjustment and both its inverse logsum parameters are significant after adjustment (they
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are significantly different from each other after adjustment as well). Regardless, the 

marginal significance of this model implies that this three-level nesting specification may 

not be valid. However, variations of this model are revisited in the next two sections.

10:00 A.M .-3:59 P.M.

JGLJ

CO! •CT
NONSTOP

NS.NS 'd irJOUBLE-
ONNECT

Dll
DIRECT

mt̂ l\  iVHi

FIGURE 5.4: Three-Level NL Time, Level-of-Service Model Structure

These three-level NL results indicate that there is moderate itinerary competition 

among itineraries sharing a common time period and greater competition among 

itineraries sharing both time period and carrier or (to a lesser extent) time period and 

level-of-service. This demonstrates the importance of conditioning the within carrier 

(level-of-service) competition dynamic by time period. However, note that the three-level 

time, carrier NL model implies that itineraries of the same carrier, but of different time 

periods, do not exhibit much competition amongst themselves.
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3:59 P.M.10:00 A.M. 

1/Pr i / p - r

FIGURE 5.5: Three-Level NL Time, Carrier Model Structure 

5.7 THREE-LEVEL WEIGHTED NESTED LOGIT MODEL

The three-level weighted nested logit model is a direct extension of the two-level 

weighted nested logit model. The mathematical structure of the model is:

S, =  wa x S l a + w „ x S ia 

=  K ,  x S ,  x S j ,  x 5 .  +  w „  x S ,  x S  x S . ,

exp A 1 " 

\ M t y
exp

E exP

(

t 'e T H T

■X Me ex
x

r , E exp
y c 'e C

M t

Me
r ,

exp
+ ^ x -

'  1 A
— r,
M t  j

exp

v
r \  

M t

2 ] exp ( M c K )

r
V Ms y ex

■x p ( ms^ )

Z exP
t 'e T Mt

■r, 2 > P
s 'e S

M t

Ms
r , S exP ( ^ )

(5.10)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

91

Due to the marginal significance of the three-level time, level-of-service NL 

model and the significance of the three-level time, carrier NL model, a three-level WNL 

model was estimated with parallel three-level structures for time, carrier and time, level- 

of-service. Figure 5.6 gives a visual representation of this model and the estimation 

results are reported in Table 5.5. The upper-level inverse logsum parameter for time is 

significant at the 0.001 level (after adjustment) and the lower-level inverse logsum 

parameter for carrier is significant (at the 0.001 level) after adjustment indicating a high 

level of competition among itineraries flown by a carrier within a time period. However, 

the lower-level inverse logsum parameter for level-of-service is not significant after 

adjustment. Additionally, after adjustment, the weight on the time, carrier structure is not 

significantly different from one. These results indicate that the time, carrier side of the

FIGURE 5.6: Three-Level WNL Time | Carrier, Time | Level-of-Service Model Structure
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model “dominates”. Finally, after adjustment, the model is only marginally better than 

the three-level time, carrier NL model.

5.8 NESTED WEIGHTED NESTED LOGIT MODEL

The nested weighted nested logit model, a “hybrid” version of the NL and WNL 

models, is in the GEV class of models and is new to the literature. The motivation for 

estimating this model came from the estimation results of the three-level NL and WNL 

models discussed in Sections 5.6 and 5.7, respectively. Both three-level NL models that 

yielded significant (or marginally significant) results (the time, level-of-service and time, 

carrier models) had itineraries nested at the upper level by departure time. However, 

when these models were “combined” into a three-level WNL model, the weight

5:00-9^ 10:00 A .M  -3 :5 9  P.M.

W,

FIGURE 5.7: Nested Weighted Nested Logit Model Structure
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parameter and the lower-level inverse logsum parameter for level-of-service in the 

time, level-of-service structure were not significant. To address this, the NWNL was 

developed. Figure 5.7 gives a visual representation of this model. In the structure shown 

in the figure, itineraries are grouped at the upper level by departure time. On the lower 

level (within a time period) each itinerary is placed into two parallel nesting structures: a 

carrier structure and a level-of-service structure. A weight parameter indicates the relative 

importance of each of these structures within the upper-level departure time nest. The 

share of passengers assigned to each itinerary between an airport-pair for a given day of 

the week is:

The estimation results for this model are presented in Table 5.5. The results indicate that 

this model is almost identical to the three-level WNL model discussed in Section 5.7.

st = St X [ ( w c X Sc]t X silct ) + (w s x Ss]t X silst)

t 'e T  \ M 1 ' y

X

t  \ \  \

v (5.11)
f f  \ \
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That is, its value function parameter estimates are very similar to the three-level WNL, 

and its lower-level inverse logsum parameter for level-of-service and weight parameter 

are not significant after adjustment49. Finally, the NWNL model only marginally 

improves upon the three-level time, carrier NL model and the three-level WNL model. 

Thus, it appears that “weighting” carrier and level-of-service structures within a time 

period does not improve upon our understanding of the true itinerary competition 

dynamic.

Although the three-level WNL and NWNL models yield insignificant (after 

adjustment) parameter estimates (indicating their nesting structures may not be valid for 

the current application), the improvement in these models (over previously estimated 

models with respect to log-likelihood values) demonstrates the potential of improving 

model goodness of fit through more complex nesting. This possibility is explored in 

Chapter 6.

5.9 SUMMARY AND CONCLUSIONS

This chapter shows that the competition among air-travel itineraries is not 

“uniform”. Thus, itinerary share models employing multinomial logit methodology are 

not adequate. Two-level nested logit models are estimated showing that itineraries 

sharing a common time period or carrier (but not level-of-service) exhibit a strong 

amount of competition among themselves. Using these results, a two-level weighted 

nested logit model (a new variation in the GEV family of models) with parallel time and

49 The weight parameter is not significantly different than one indicating that (like the three-level WNL 
model) the carrier structure “dominates” the level-of-service structure.
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carrier nesting structures is estimated. It significantly rejects the standard two-level NL 

models and has advantages over the more restrictive NL model structure.

Three-level nested logit models are estimated. The results of these models show 

that itineraries sharing a common time period have a moderate amount of competition 

amongst themselves, while itineraries sharing both time period and carrier (and to a lesser 

extent time period and level-of-service) exhibit a strong amount of competition amongst 

themselves.

This chapter introduces the three-level WNL and NWNL models. These models 

are new to the literature and are in the GEV family of models. However, even though 

these models simultaneously incorporate the three dimensions of departure time, carrier 

and leyel-of-service, they only marginally improve upon the three-level NL model with 

itineraries nested at the upper level by departure time and at the lower level by carrier.

Finally, while the estimations for models with itineraries nested by level-of- 

service were generally not significant, it is still reasonable to expect that increased 

competition exists within level-of-service nests (especially when the level-of-service 

nests are within upper-level time period nests as demonstrated by the marginal 

significance of the time, level-of-service three-level NL model). Regardless, it appears 

that the underlying competition among air-travel itineraries can almost fully be described 

by nesting itineraries by the departure time and carrier dimensions.
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CHAPTER 6: MODELING THE UNDERLYING COMPETITIVE DYNAMIC 
AMONG AIR-TRAVEL ITINERARIES WITH ORDERED GENERALIZED 
EXTREME VALUE MODELS

6.1 INTRODUCTION

The models estimated in Chapter 5 demonstrate the importance of considering the 

differential competition or substitution among air-travel itineraries connecting airport- 

pairs. In particular, various model structures were developed showing that inter-itinerary 

competition is differentiated by departure time, carrier and (to a lesser extent) level-of- 

service. This demonstrates that itinerary share models employing multinomial logit 

methodology are not adequate for describing the underlying competition among air-travel 

itineraries.

The model specifications estimated in Chapter 5 included several variations of the 

nested logit model structure. However, these models (those that nest itineraries by 

departure time) group itineraries by arbitrary discrete time periods and recognize 

differences in competition only between and within the pre-defined time periods (nests). 

This imposes unrealistic constraints on the departure time-of-day competition dynamic; 

for example, it implies that an itinerary within a given nest will compete more closely 

with an itinerary sharing the nest than with an itinerary in an adjacent nest that is closer in 

departure time.

The models formulated and presented in this chapter capture a more complicated

and realistic itinerary competition structure (for the departure time dimension) than the

nested logit models. The motivation for developing these models was the belief that -

within an airport-pair -  the amount of competition between itineraries is differentiated by

96
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the relative degree of proximity in their departure times. This property, named 

“proximate covariance” by Small (1987), implies that itineraries that are “closer” to each 

other (by departure time in this case) exhibit a higher amount of error correlation 

(substitution and competition) with each other than with itineraries that are more 

separated in time. The level of correlation between itineraries increases the closer they 

are to each other. Models estimated in this chapter capture this property by grouping 

(nesting) itineraries (according to their departure times) into narrow time periods and 

ordering these time periods by departure time (early morning to late evening). These 

models hypothesize that an itinerary will compete most closely with itineraries in the 

same narrow time period and less closely as the difference in time periods increases.

This chapter begins by estimating several ordered generalized extreme value 

models (Small 1987). Small’s development of the OGEV model was for the case of 

distinctly ordered alternatives50. Bhat (1998) used a combined MNL-OGEV structure to 

model mode and departure time choice for distinct trips. In the current application, the 

OGEV structure is used to model the underlying competition among air-travel itineraries 

(for a given airport-pair-day-of-the-week) along the departure time dimension. As will be 

shown below, the nesting structure of these models consists of overlapping time periods 

where each itinerary is allocated to contiguous nests according to allocation parameters. 

The values and significance of these allocation parameters indicate whether the 

assumption underlying the OGEV model (i.e. the proximate covariance property) is valid

50 For example, a household decision scenario of how many automobiles to own.
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(that is, whether the hypothesis that the nested logit model is adequate to describe the 

departure time competition dynamic can be rejected).

As demonstrated (using variations of the nested logit model) in Chapter 5, it is 

desirable to model the intra-carrier (and potentially intra-level-of-service) competition 

dynamic within an upper-level departure time structure. The OGEV models described in 

the preceding paragraph cannot accomplish this (since they only model the inter-itinerary 

competition dynamic along the departure time dimension). To rectify this, “hybrid” 

OGEV models are developed in this chapter. These models are new to the literature and 

incorporate the traditional OGEV model structure (described above) at the upper level 

with a GEV component such as the NL model at the lower level. Modeling air-travel 

itinerary shares using hybrid OGEV specifications (representing realistic and complicated 

competition dynamics) is an important step forward for aviation demand modeling.

6.2 ORDERED GENERALIZED EXTREME VALUE MODEL

Figure 6.1 gives a visual representation (for a generic airport-pair-day-of-the- 

week) of an OGEV model with six time periods (TP’s) (5:00-6:59 A.M., 7:00-9:59 A.M., 

10:00 A.M.-12.-59 P.M., 1:00-3:59 P.M., 4:00-6:59 P.M. and 7:00-10:59 P.M.) in which 

each itinerary is allocated to two nests. Figure 6.2 gives a visual representation of an 

OGEV model with eight time periods (5:00-6:59 A.M., 7:00-8:59 A.M., 9:00-10:59 

A.M., 11:00 A.M.-12:59 P.M., 1:00-2:59 P.M., 3:00-4:59 P.M., 5:00-6:59 P.M. and 7:00- 

10:59 P.M.) in which each itinerary is allocated to three nests. With the OGEV model, 

the share of passengers assigned to each itinerary between an airport-pair for a given day 

of the week is as follows:
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k+M

Sk* = 'Zp ii c k \Nj)P{Ni) (6 .1)
j=k

where i C  k  indicates that itinerary i departs during time period k ,

M  + 1 is the number of nests to which each itinerary is allocated,

Nj is nest j  that includes alternative i (where j  = + M ),

K  is the total number of time periods,

P(z t~ k \  Nj) is the probability of choosing alternative i from nest j  and 

P{Nj )  is the (unobserved) probability of choosing nest j .

The components of equation (6.1) can be expanded in terms of the probability of 

choosing a specific itinerary, i , from nest j  to which it is allocated as follows:

i'ck'eNj

Otj-k is the allocation parameter for an itinerary belonging to time period 
k  assigned, in part, to nests j  = k , k  + \ , . . . ,k  + M  subject to oa> 0 and

fj. is the inverse logsum parameter associated with the nests and 

Vt, is the deterministic portion of the utility for alternative i '.

(6.1a)

i'ck'eNj

where ^  is the summation over all itineraries, i ',  belonging to nest j ,

M

i=0
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and the probability of choosing nest j  is as follows:
1 0 0

P ( N j )  = (6.1b)

\fN m  \ M  J

X exp [ “ r *»

/
where T Nj = ln  J ]  OCj-k'Qxv ( v Vi') ■

\ i '< z k ’e N j y

The estimation results for the models represented in Figures 6.1 and 6.2 are 

reported in Table 6.151. In both models, the inverse logsum parameter estimate is

significantly larger than one (after adjustment) indicating increased itinerary competition 

within nests and the allocation parameters are significantly different from zero and one 

(after adjustment) indicating increased itinerary competition across time periods. 

Statistically, both models reject the two-level NL time model (Table 5.4) at the 0.001 

level after adjustment. Additionally, these OGEV models are behaviorally superior to the 

nested logit model since they allow for differential itinerary competition across time 

period boundaries.

The three-allocation OGEV model significantly rejects the two-allocation OGEV 

model at all levels of significance after adjustment. Additionally, it is behaviorally 

superior since (for a given itinerary) it yields four differential “levels” of inter-itinerary

51 In Table 6.1, all parameter estimates significant at the 0.05 level after the adjustment procedure. The 
significance of value function parameter estimates is with respect to their hypothesized value o f zero; the 
significance o f inverse logsum parameter estimates is with respect to their hypothesized value of one; the 
significance of allocation parameter estimates is with respect to their hypothesized values o f zero and one.
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FIGURE 6.1: Two-Allocation OGEV Model Structure
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FIGURE 6.2: Three-Allocation OGEV Model Structure
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TABLE 6.1: Itinerary Share Models: Two and Three-Allocation OGEV’s

Explanatory Variables
Model 

2-Allocation OGEV 3-Allocation OGEV
Level-of-Service
Nonstop Itinerary in Nonstop Market 0.0000 0.0000
Direct Itinerary in Nonstop Market -1.6049 -1.5549
Single-Connect Itinerary in Nonstop Market -2.3157 -2.2380
Double-Connect Itinerary in Nonstop Market -5.3363 -5.1295
Direct Itinerary in Direct Market 0.0000 0.0000
Single-Connect Itinerary in Direct Market -0.6106 -0.5905
Double-Connect Itinerary in Direct Market -3.1604 -3.0386
Single-Connect Itinerary in Single-Connect Market 0.0000 0.0000
Double-Connect Itinerary in Single-Connect Market -2.1618 -2.0988
Connection Quality
Second-Best Connection -0.3161 -0.2966
Second-Best Connection Time Difference -0.0070 -0.0067
Distance Ratio -0.0107 -0.0102
Best Connection Time Difference -0.0046 -0.0044
Carrier Attributes
Fare Ratio -0.0051 -0.0050
Carrier Constants (Proprietary)
Code share -1.4842 -1.4229
Aircraft Type
Mainline Jet 0.0000 0.0000
Regional Jet -0.3764 -0.3631
Propeller Aircraft -0.3435 -0.3329
Departure Time
5 - 6 A.M. -0.1825 -0.1749
6 - 7  A.M. 0.0000 0.0000
7 - 8 A.M. 0.2335 0.2050
8 - 9 A.M. 0.3132 0.2808
9 - 1 0  A.M. 0.3360 0.2993
1 0 - 1 1  A.M. 0.3069 0.2991
1 1 - 1 2  noon 0.2812 0.2532
1 2 - 1  P.M. 0.2978 0.2622
1 - 2 P . M . 0.2321 0.2052
2 - 3  P.M. 0.2285 0.1957
3 - 4 P.M. 0.2425 0.2348
4 - 5  P.M. 0.1883 0.1677
5 - 6 P.M. 0.1888 0.1686
6 - 7  P.M. 0.2507 0.2293
7 - 8 P . M. 0.0638 0.0756
8 - 9 P . M. -0.0521 -0.0371
9 -  10 P.M. -0.1814 -0.1612
10 -  Midnight -0.2607 -0.2412
Inverse Logsum Parameter 1.2607 1.3182
Alpha 1 (Allocation Parameter) 0.2215 0.0728
Alpha 2 (Allocation Parameter) 0.2520
Log Likelihood at Zero -2 ,173,197 -2,173,197
Log Likelihood at Convergence -1 ,557,214 -1,556,869
Adjusted Log Likelihood at Convergence -49,435 -49,424
Rho-square w.r.t. Zero 0.2834 0.2836

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

103

competition: itineraries sharing the same time period, itineraries in adjacent time 

periods, itineraries that are separated by two time periods, and itineraries that are 

separated by three or more time periods52. This confirms the belief that itinerary 

competition is differentiated by proximity in departure time (higher competition with 

close proximity). Examining the cross-elasticity equations of this three-allocation OGEV 

model for the change in the probability of itinerary j  due to changes in an attribute of

itinerary i illustrates these relationships. If itinerary i is three or more time periods 

away from itinerary j  , the elasticity is given by:

where X m is the value of itinerary Vs m th attribute and [3m is the parameter 

corresponding to attribute m  . This is the same elasticity formula as that obtained for the 

MNL model. However, if itinerary j  belongs to time period k  and itinerary i belongs

to time period ( k  — 2 ) 53, the elasticity is given by:

52 T he tw o -a llo ca tio n  O G E V  m o d e l a llo w s for three d ifferen tia l lev e ls  o f  itinerary com p etition : itineraries 
sharing the sam e tim e  per iod , itineraries in  adjacent tim e p eriod s, and itineraries that are separated  b y  tw o  
or m ore tim e p eriod s. T he tw o -le v e l N L  m o d e l (w ith  itineraries n ested  b y  departure tim e) a llo w s  for o n ly  
tw o  d ifferen tia l le v e ls  o f  itinerary com p etition : itineraries w ith in  the sam e n est and  itineraries n ot in  the 
sam e nest.

53 A n  a n a lo g o u s form u la  a p p lies i f  itinerary i b e lo n g s  to  tim e p er io d  ( k  +  2 ).
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(6.3)

This elasticity is larger in magnitude than the elasticity in equation (6.2) since jU must be

larger than one. Note that the conditional probability of each itinerary given the nest (and 

hence the elasticity) is a function of its allocation parameter with respect to the nest54. 

Next, if itinerary j  belongs to time period k  and itinerary i belongs to time period

( k  — l ) 55, the elasticity is given by:

7 ) x  —  — ' X i m  f i n

/? +
( / / - l ) [ P ( y | M ) P ( / | M ) / , ( M )  +  f 5 ( ; | M  + i ) P ( i | M  + i ) P ( M  + i ) ] ' (6.4)

This elasticity is larger in magnitude than the elasticities in equations (6.2) and (6.3). 

Again, the magnitude of the elasticity is a function of the values of the allocation 

parameters. Finally, if itineraries j  and i both belong to time period k , the elasticity is

given by:

( ^ - 0
p + -

P ( j \ N k ) P ( i \ N k ) P ( N k )  +  P ( j \ N k  +  i ) P ( i \ N k  +  l ) P ( N k  + . ) '  

+ p ( j  I N k  +  2 ) p ( i  |  N k  +  i j P ^ N k  +  2)
(6.5)

This elasticity is larger in magnitude than the elasticities in equations (6.2 -  6.4).

1 T hat is , P ( i  | N k )  and P ( j \  N k )  are fu n ction s o f  the un derly ing  a llo ca tio n  param eters.
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Hybrid OGEV specifications incorporating inter-itinerary competition along 

the carrier and/or level-of-service dimensions, under the time dimension, are presented in 

the following sections.

6.3 THREE-LEVEL NESTED LOGIT ORDERED GENERALIZED EXTREME 
VALUE MODEL

Following the results obtained from the three-level NL models presented in 

Chapter 5, three-level nested logit ordered generalized extreme value (NL-OGEV) 

models are developed where the OGEV model structure (described in Section 6.2) is 

incorporated in the upper level of the three-level NL model structure (described in 

Chapter 5). These models, which are new to the literature, have itineraries allocated to 

nests at the upper level according to an OGEV structure and nested at the lower level by 

carrier or level-of-service. Visual representations of a three-level time, level-of-service 

NL-OGEV model and a three-level time, carrier NL-OGEV model (with itineraries 

allocated to two OGEV nests) are shown in Figures 6.3 and 6.4, respectively. A visual 

representation of a three-level time, carrier NL-OGEV model (with itineraries allocated 

to three OGEV nests) is shown in Figure 6.5.

55 An analogous formula applies if  itinerary Z belongs to time period ( k  +  l ) .
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FIGURE 6.5: Three-Level Time, Carrier NL-OGEV (Three-Allocation) Model Structure 

For the three-level time, carrier NL-OGEV models, the share of passengers 

assigned to each itinerary between an airport-pair for a given day of the week is given by:

k+ M

=  ' Z P ( O G E K ) P { c \ OGEVj ) P { i \ c , ° GEVj )
j= k

expk+M r

I ------
Z exP

M o g e v

exp
f  ^

PoGEV y

V f^NL

J'eJ

1

P O G E V

r. Z exP
c 'eC

PoGEV
PnL

r., X  a ,-*'eXP (/* A ^ )
i 'a k \ c

(6 .6)

where P ( O G E V j ) is the passenger share assigned to the j ' h upper-level OGEV 
nest,
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P ( c  | O G E V j ) is the passenger share assigned to carrier c 's  lower- 

level NL nest given the j th upper-level OGEV nest,

P ( i  | c ,  O G E V j ) is the passenger share assigned to itinerary i given 
lower-level carrier NL nest c and upper-level OGEV nest j , 

jUogev is the inverse logsum parameter associated with the upper-level 
OGEV nests,

jUNL is the inverse logsum parameter associated with the lower-level 
carrier NL nests,

r > l n

r > l n

X a jK QMPNLVi’)

f  (  w
P o GEV_y

V P nl

and

V
2 > p
c 'e C J  J

and similarly for the three-level time, level-of-service NL-OGEV model. Consistent with 

the three-level NL model, the OGEV and nested logit inverse logsum parameter estimates 

must be greater than one and the NL inverse logsum parameter must be larger than the 

OGEV inverse logsum parameter.

The estimation results for the three-level NL-OGEV models are reported in Table 

6.256. The three-level time, level-of-service (two-allocation) NL-OGEV model does not 

reject the two-allocation OGEV model (Table 6.1) after adjustment. However, it does 

improve upon the two-allocation OGEV model before adjustment, both its inverse 

logsum parameters are significant after adjustment (they are significantly different from 

each other after adjustment as well), and the allocation parameter is significant after 

adjustment. These results are similar to the results of Section 5.6 where the three-level
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time, level-of-service NL model was shown to only marginally improve upon the 

two-level time NL model.

TABLE 6.2: Itinerary Share Models: Three-Level NL-OGEV’s and Three-Level 
WNL-OGEV

Explanatory Variables
3-Level

NL-OGEV
(2-Allocation):

Time|LOS

Model
3-Level

NL-OGEV
(2-Allocation):

Time|Carrier

1
3-Level

NL-OGEV
(3-Allocation):

Time|Carrier

3-Level 
W NL-OGEV  

(2-Allocation): 
T|C, T|L

Level-of-Service
Nonstop Itinerary in Nonstop Market 0.0000 0.0000 0.0000 0.0000
Direct Itinerary in Nonstop Market -1.6459 -1.6060 -1.5840 -1.6469
Single-Connect Itinerary in Nonstop M arket -2.3144 -2.3175 -2.2837 -2.3053
Double-Connect Itinerary in Nonstop M arket -5.4438 -4.9888 -4.8732 -5.1164
Direct Itinerary in Direct Market 0.0000 0.0000 0.0000 0.0000
Single-Connect Itinerary in Direct Market -0.5766 -0.6203 -0.6148 -0.5710
Double-Connect Itinerary in Direct Market -3.2063 -3.0155 -2.9596 -3.0597
Single-Connect Itinerary in Single-Connect Market 0.0000 0.0000 0.0000 0.0000
Double-Connect Itinerary in Single-Connect Market -2.2079 -2.1151 -2.0968 -2.1635
Connection Quality
Second-Best Connection -0.3123 -0.2144 -0.1936 -0.2084
Second-Best Connection Time Difference -0.0069 -0.0059 -0.0057 -0.0058
Distance Ratio -0.0107 -0.0107 -0.0101 -0.0105
Best Connection Time Difference -0.0046 -0.0048 -0.0048 -0.0047
Carrier Attributes
Fare Ratio -0.0051 -0.0034 -0.0034 -0.0033
Carrier Constants (Proprietary) 
Code share -1.4720 -1.4865 -1.4594 -1.4593
Aircraft Type
Mainline Jet 0.0000 0.0000 0.0000 0.0000
Regional Jet -0.3749 -0.3947 -0.3894 -0.3892
Propeller A ircraft -0.3409 -0.3176 -0.3138 -0.3118
Departure Time
5 - 6  A.M. -0.1829 -0.1911 -0.1922 -0.1894
6 - 7  A.M. 0.0000 0.0000 0.0000 0.0000
7 - 8  A.M. 0.2356 0.2638 0.2308 0.2675
8 - 9  A.M. 0.3151 0.3407 0.3092 0.3430
9 -1 0  A.M. 0.3380 0.3622 0.3193 0.3651
10 - 1 1  A.M. 0.3047 0.3424 0.3363 0.3437
1 1 - 1 2  noon 0.2790 0.3205 0.2747 0.3221
1 2 - 1  P.M. 0.2958 0.3370 0.2833 0.3385
1 - 2  P.M. 0.2327 0.2645 0.2196 0.2678
2 - 3  P.M. 0.2288 0.2572 0.2067 0.2602
3 - 4  P.M. 0.2415 0.2718 0.2534 0.2735
4 - 5  P.M. 0.1911 0.2201 0.1878 0.2246
5 - 6  P.M. 0.1912 0.2060 0.1840 0.2103
6 - 7  P.M. 0.2523 0.2678 0.2471 0.2703
7 - 8  P.M. 0.0600 0.0948 0.1058 0.0910
8 - 9  P.M. -0.0531 -0.0014 0.0122 -0.0014
9 - 1 0  P.M. -0.1794 -0.1141 -0.0944 -0.1089
10 -  Midnight -0.2585 -0.2018 -0.1837 -0.1986
Upper-Level OGEV Inverse Logsum Parameter 
(Time) 1.2325 1.0896 1.1087 1.0698

56 The three-level time, level-of-service (three-allocation) NL-OGEV model did not yield reasonable 
results. Additionally, in Table 6.2, parameter estimates in bold not significant at the 0.05 level after the 
adjustment procedure.
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Lower-Level NL Inverse Logsum Parameter 
(Carrier) 1.4539 1.5196 1.4778
Lower-Level NL Inverse Logsum  Parameter 
(LOS) 1.2718 1.5765
Alpha 1 (Allocation Parameter) 0.1903 0.1787 0.0205 0.1648
Alpha 2 (Allocation Parameter) 0.2425
W eight Parameter (Tim e|Carrier Structure) ------ 0.9012
Log Likelihood at Zero -2,173,197 -2,173,197 -2,173,197 -2,173,197
Log Likelihood at Convergence -1,557,199 -1,553,430 -1,552,661 -1,553,397
Adjusted Log Likelihood at Convergence -49,435 -49,315 -49,291 -49,314
Rho-square w.r.t. Zero 0.2835 0.2852 0.2855 0.2852

The three-level time, carrier (two-allocation) NL-OGEV model rejects the three- 

level time, carrier NL model (Table 5.5) and the two-allocation OGEV model (Table 6.1) 

at the 0.001 level (before and after adjustment).

The time, carrier (three-allocation) NL-OGEV model rejects the three-level time, 

carrier NL model (Table 5.5), the three-allocation OGEV model (Table 6.1) and the time, 

carrier (two-allocation) NL-OGEV model (Table 6.2) at the 0.001 level (before and after 

adjustment). Of the models discussed up to this point in the dissertation, the three-level 

time, carrier (three-allocation) NL-OGEV model has the best overall model statistics (by 

far). Additionally, its inverse logsum and allocation parameter estimates are all highly 

significant after adjustment. This indicates a high level of competition among itineraries 

flown by the same carrier within the same, adjacent or plus/minus two time periods.

These strong three-level NL-OGEV results indicate that imposing an upper-level 

OGEV structure and a lower-level NL structure on the itinerary competition dynamic 

dramatically improves upon the more rigid NL model structure. In addition to reinforcing 

the finding from Chapter 5 that the within carrier and (to a lesser extent) within level-of- 

service competition dynamic should be conditioned by time period, the significance of 

the OGEV allocation parameters in these models indicate that itineraries do indeed have
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several differential levels of competition (with respect to departure time) with other 

itineraries. That is, the closer itineraries are to each other (with respect to departure time) 

the more they will compete with each other.

In the following section, a three-level weighted nested logit OGEV model is

estimated. This model combines the results of three-level NL-OGEV models.

6.4 THREE-LEVEL WEIGHTED NESTED LOGIT ORDERED GENERALIZED 
EXTREME VALUE MODEL

The three-level weighted nested logit ordered generalized extreme value (WNL- 

OGEV) model combines the OGEV model with the three-level WNL model (described in 

Chapter 5). This allows for the simultaneous estimation of parallel three-level NL-OGEV 

nesting structures with a weight parameter indicating the relative importance of each 

structure.

Due to the marginal significance of the three-level time, level-of-service (two- 

allocation) NL-OGEV model and the significance of the three-level time, carrier (two- 

allocation) NL-OGEV model, a three-level WNL-OGEV (two-allocation) model is 

estimated with parallel three-level NL-OGEV structures for time, carrier and time, level- 

of-service. That is, within each structure, itineraries are nested at the upper level 

according to an OGEV specification and are nested at the lower level by level-of-service 

or carrier. Figure 6.6 gives a visual representation of this model and its mathematical 

structure is given by:
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k+M

X  P(OGEVj)P(c  I OGEVj)P{i  \ c,OGEVj)
j=k

k+M (6 -7)
+ w t J  £  P ( O G E V j ) P ( l  | O G E V j ) P(i \ I , O G E V j )

j=k

where W( c is the weight given to the time | carrier structure,

Wtl — \ — Wtc is the weight given to the time | level-of-service structure,
the first summation is identical to equation (6.6) and
the second summation is identical to equation (6.6) except for the
substitution of level-of-service, I , for carrier, c .

TP7s 2, 3 TP7s 2, 3

i j  1/p-

Tf

i A  H L

FIGURE 6.6: Three-Level Time | Carrier, Time | Level-of-Service WNL-OGEV (Two- 
Allocation) Model Structure
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The estimation results for this model are reported in Table 6.2 The upper-level OGEV 

inverse logsum parameter is significant at the 0.001 level after adjustment and the lower- 

level NL inverse logsum parameter for carrier is significant (at the 0.001 level) after 

adjustment indicating a high level of competition among itineraries flown by a carrier 

within the same or adjacent time periods. However, the lower-level inverse logsum 

parameter for level-of-service is only significant at the 0.10 level after adjustment. 

Additionally, after adjustment, the weight on the time, carrier structure is only 

significantly different from one at the 0.10 level. Similar to the findings from Chapter 5 

(with respect to the three-level WNL model), these results indicate that the time, carrier 

side of the model “dominates”. Finally, after adjustment, the model is only marginally 

better than the three-level time, carrier (two-allocation) NL-OGEV model.

6.5 SUMMARY AND CONCLUSIONS

In this chapter, models are estimated capturing a realistic inter-itinerary 

competition dynamic along the departure time dimension. Each of the models tests the 

hypothesis that air-travel itineraries (for a given airport-pair-day-of-the-week) exhibit 

proximate covariance; that is, the amount of competition (substitution) between 

itineraries increases as the difference in their departure times decreases. The nested logit 

models estimated in Chapter 5 are not capable of capturing the phenomenon.

Two and three-allocation OGEV models are estimated. Both of these models 

show that air-travel itineraries do indeed exhibit the proximate covariance property. Thus, 

the hypothesis that nested logit models (with itineraries nested by departure time) are 

adequate to describe the inter-itinerary competition dynamic along the departure time
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dimension is rejected. The three-allocation OGEV model captures, for each itinerary, 

four differential levels of competition with respect to other itineraries in its airport-pair 

along the departure time dimension (depending on the proximity of the itineraries’ 

departure times). These OGEV models are the first in the aviation demand literature to 

capture the proximate covariance property.

Advanced hybrid OGEV models are estimated (these models are new to the 

literature) incorporating an OGEV structure at the upper level with a GEV (in particular, 

NL and WNL) structure on the lower level. In addition to capturing the proximate 

covariance property of air-travel itineraries, these models also measure differential inter

itinerary competition dynamics along the carrier and/or level-of-service dimensions. Of 

these models, the three-level time, carrier (three-allocation) NL-OGEV model yielded 

superior model statistics and behavioral interpretations. This model is the preferred 

specification of the dissertation.

Finally, the models estimated in this chapter are shown to have advantages over 

the more restrictive model structures estimated in the previous chapters and are shown to 

outperform these models with respect to statistical tests and behavioral interpretations. It 

is also interesting to note that the results of this chapter “parallel” those from Chapter 5. 

First, the “superior” model in both chapters has a specification where itineraries are 

nested at the lower level by carrier within an upper level departure time structure.

Second, the hybrid OGEV models in this chapter with level-of-service in their 

specification do not yield significant results (similar to the nested logit models of Chapter 

5 with level-of-service in their specification not yielding significant results).
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CHAPTER 7: SUMMARY AND CONCLUSIONS

7.1 SUMMARY AND RESULTS

The research detailed in this dissertation describes the development of aggregate 

air-travel itinerary share models. These models forecast the number of passengers 

expected to travel on each itinerary between any airport-pair (conditional on the 

forecasted airport-pair volume) and are essential to strategic planning in the aviation 

industry.

Using state-of-the-art logit share techniques, this is the first study to model 

aviation demand at the itinerary level. Modeling itinerary-level demand is critical because 

itineraries are the products that are ultimately purchased by passengers and itinerary-level 

attributes directly influence demand. As a result, this study provides the most 

comprehensive and thorough explanation of air-carrier demand to-date and fills a gap in 

the airline forecasting literature.

The motivation for this research is twofold given that the overarching goal is to 

model itinerary shares: 1) to understand the impact of different air-carrier service 

attributes on itinerary share and 2) to understand the underlying competitive dynamic 

between itineraries.

To address the first goal, eighteen aggregate multinomial logit models are

developed, each covering a major region-pair of the United States. In specifying these

models, independent variables are used relating each itinerary with its airport-pair

demand share. Due to the fact that these models employ itinerary-level data (which has

previously not been reported in the literature), the development of these models provides

115
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a better understanding of the relative importance of different service factors on 

aviation demand compared to previous studies. Detailed analysis is performed on the 

relative importance of itinerary level-of-service, connection quality, aircraft type and 

size, departure time, carrier presence, fares and carrier on itinerary share.

Level-of-service is shown to have a strong impact on itinerary share with each 

reduction in level-of-service from the best available (in an airport-pair) substantially 

reducing the value (and hence market share) of the associated itinerary. This confirms the 

well-known belief that, if possible, people prefer to avoid connections in their air-travel 

(all things being equal). For itineraries that do involve a connection however, itineraries 

with shorter ground times and less circuitous routings are shown to be preferred.

Increased carrier presence in an airport-pair is shown to positively influence a carrier’s 

itinerary shares in that airport-pair. This is undoubtedly a result of the many marketing 

advantages (most notably, the advantage of offering customers an attractive frequent flyer 

program) afforded carriers with significant presence in a market. As expected, lower-cost 

itineraries are shown to be preferred to higher-cost itineraries (all things being equal).

The results also indicate that passengers prefer larger aircraft to smaller aircraft types and 

(within an aircraft type) prefer larger planes to smaller planes. This confirms the belief 

that passengers prefer larger airplanes due to their higher levels of comfort and perceived 

levels of safety. Finally, the results show that passengers have varying preferences for 

departure times (depending on the region-pair of the different airport-pairs). However, in 

general, early morning and late evening itineraries are not preferred.
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These multinomial logit models were implemented as a component of a major 

U.S. carrier’s itinerary share model and were validated using onboard segment-level data. 

The logit-based models consistently and significantly improved upon the carrier’s 

previous QSI-based model with respect to passenger accuracy. This demonstrates that 

logit-based models are not only conceptually superior to QSI-based models (as described 

in Chapter 1), but are superior in practice as well.

The second goal of this dissertation is to model the underlying competitive 

dynamic among air-travel itineraries. It is hypothesized that inter-itinerary competition 

among itineraries is not “uniform”, but is rather differentiated by proximity in departure 

time, carrier, level-of-service or a combination of these dimensions. MNL models cannot 

capture this phenomenon and, as a result, this hypothesis is tested via the development 

and estimation of variations on the nested logit model. These models group (nest) 

itineraries according to combinations of the above-mentioned dimensions and measure 

differential levels of inter-itinerary competition as a function of the value of their 

estimated inverse logsum parameter(s). Some of these nested logit model structures have 

never been used in the aviation demand literature, and some are new to the logit share 

literature in general.

Two-level nested logit models are estimated showing that itineraries sharing a 

common departure time period or carrier (but not level-of-service) exhibit a strong 

amount of competition amongst themselves. These models reject the hypothesis that the 

MNL model is adequate for modeling air-travel itinerary shares. Using these results, a 

two-level weighted nested logit model with parallel time and carrier nesting structures is
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estimated. It significantly rejects the standard two-level NL models, and has 

advantages over the more restrictive NL model structure since it allows for the inter

itinerary competition dynamic to be measured across two dimensions. The two-level 

WNL model cannot capture the inter-itinerary competition dynamic that may exist among 

itineraries sharing a common attribute within another attribute, however. To address this, 

three-level nested logit models are estimated. The results of these models show that 

itineraries sharing a common departure time period have a moderate amount of 

competition amongst themselves, while itineraries sharing both time period and carrier 

(and to a lesser extent time period and level-of-service) exhibit a higher level of 

competition amongst themselves. Finally, three-level WNL and NWNL models are 

introduced. These GEV models, new to the literature, simultaneously incorporate the 

three dimensions of departure time, carrier and level-of-service. Their estimation results 

only marginally improve upon the three-level NL model with itineraries nested at the 

upper level by departure time and at the lower level by carrier, however.

These nested logit specifications represent an important step forward for air-travel 

itinerary share modeling since they demonstrate that inter-itinerary competition is not 

“uniform”. These models (those that employ itinerary departure time in their nesting 

structure) are hypothesized to inadequately describe the inter-itinerary competition 

dynamic along the departure time dimension, however. This is because they group 

itineraries by arbitrary and rigid time periods.

It is hypothesized that the competition (substitution) among air-travel itineraries 

(for a given airport-pair-day-of-the-week) along the departure time dimension increases
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(with several breakpoints) the closer itineraries are to each other with respect to 

departure time. To capture this more realistic approach to itinerary share modeling, 

ordered generalized extreme value (and variations thereof) models (Small 1987) are 

estimated. OGEV models have the desired property of proximate covariance (Small 

1987) where itineraries that are closer to each other by departure time exhibit greater 

correlation with each other than with itineraries that are separated in time. The level of 

correlation between itineraries increases the closer they are to each other.

Two and three-allocation OGEV models are estimated. Both of these models 

show that air-travel itineraries do indeed exhibit the proximate covariance property. Thus, 

the hypothesis is rejected that nested logit models (with itineraries nested by departure 

time) are adequate to describe the inter-itinerary competition dynamic along the departure 

time dimension. The three-allocation OGEV model captures (for each itinerary) four 

differential levels of competition with other itineraries in its airport-pair along the 

departure time dimension (depending on the proximity of the itineraries’ departure 

times). These OGEV models are the first in the literature to capture the proximate 

covariance property of airline demand.

Because it is shown (via three-level nested logit models) that the within carrier or 

within level-of-service competition dynamic is especially strong within narrow periods of 

time, advanced hybrid OGEV models are developed. These models are new to the 

literature and incorporate the traditional OGEV model structure (at the upper level) with 

other GEV components such as the NL model (at the lower level). These models capture 

complicated -  yet realistic -  competitive structures since (in addition to capturing the
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proximate covariance property) they measure differential inter-itinerary competition 

dynamics along the carrier and/or level-of-service dimensions within narrow departure 

time periods. Several of these models are estimated. Of these, the three-level time, carrier 

(three-allocation) NL-OGEV model yields superior model statistics and behavioral 

interpretations. This model is the preferred specification of the dissertation.

Finally, it is interesting to note that none of the variations of the nested logit or 

OGEV models that have itineraries nested by level-of-service in their specification 

yielded significant results. Thus, it appears that the underlying competition among air- 

travel itineraries can almost fully be described by nesting itineraries by the departure time 

and carrier dimensions. This assertion is discussed in the following section.

7.2 LIMITATIONS OF RESEARCH AND FUTURE DIRECTIONS

The research contained in this dissertation has several limitations. First, the 

models developed are itinerary “share” rather than itinerary “choice” models. This is 

because even though the bookings data (obtained from CRS data sources) employed in 

this study is based on the choices of individual travelers, it does not include any 

information on the socio-economic or demographic characteristics of the individual that 

made the booking or any trip-related characteristics of the booking (such as business vs. 

leisure, number of days booked in advance of departure, duration of stay). This is 

compensated for by the fact that comprehensive individual itinerary bookings data is 

employed. This breadth of data allows for itinerary-level demand models to be estimated 

for the first time as well as the use of specifications that have never been employed 

before.
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Regardless, this absence of data about individual travelers (and trip 

characteristics) introduces measurement error that has the potential to produce bias in the 

model parameters. Disaggregate bookings data that includes personal and trip 

characteristics should be obtained so that the effect of these variables can be estimated 

via modification of the value function or market segmentation. Such models would yield 

behavioral insights into the influence of different itinerary service characteristics on 

different groups of the population.

Similarly, it is believed that the CRS data employed in this dissertation captured 

around 90% of the U.S. Domestic air-travel bookings during the study period. It is 

assumed that the remaining 10% of bookings not captured by this data source have the 

same underlying characteristics as the CRS bookings. This assumption may not be 

warranted since the non-CRS bookings are more likely to be leisure bookings than the 

bookings contained in CRS. Further, this problem will worsen since industry-wide 

bookings data (CRS data sources) are capturing less and less bookings.

Second, fare is obviously an important determinant of itinerary choice (especially 

for leisure travelers). Detailed fare-class (or even itinerary-level) fare data was not 

available for this study, however. Rather, average fare by carrier (across itineraries) for 

each airport-pair is employed as an independent variable in the presented itinerary share 

models. This is the best fare data currently available for a revealed preference air-carrier 

demand allocation study.

Third, all models are estimated on data that precede the September 11, 2001 

terrorist attacks. Obviously, much has changed in the industry since this event occurred.
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However, use of this data for forecasting is likely to be valid since the underlying 

behavioral relationships between itinerary characteristics (e.g. departure time, level-of- 

service, connection quality, equipment used) and itinerary shares is believed to be robust. 

Chapter 4 presents validation results that confirm this belief.

Fourth, as demonstrated in Chapters 5 and 6, models employing specifications 

with itineraries nested by level-of-service generally were not significant. However, 

because itineraries of a given level-of-service exhibit many common characteristics, it is 

reasonable to expect that they should have increased competition amongst themselves. It 

is possible that the insignificance of these models is related to the itinerary generation 

engine that was employed in creating the itineraries for these models. In particular, in 

some nonstop markets this engine creates hundreds of connecting (single and double

connect) itineraries. Surely, passengers do not systematically consider each of these 

alternatives in their itinerary selection process. To address this in the future, different 

choice set generation logic should be tested and/or models employing probabilistic choice 

set consideration should be employed.

Fifth, each of the models estimated in this dissertation group airport-pairs by 

time-zone combination (e.g. East-East, East-Central, East-Mountain, East-West). 

However, other airport-pair groupings are also possible such as grouping by stage length, 

high yield vs. low yield, the size of the airports or a combination of these measures.

Finally, though the purpose of this dissertation is to present the benefits of logit- 

based air-travel itinerary share models, it should be noted that there are certain 

advantages to QSI-based models. The advantages of QSI models lie in their simplicity,
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intuitive interpretation of model parameters and adequate forecasting ability. Logit 

model estimations on the other hand (in particular, the models presented in this 

dissertation) require large amounts of data, specialized software and a trained analyst to 

estimate the model and interpret the model results. Additionally, by definition, when 

using a logit-based itinerary share model the analyst cannot “turn o ff’ variables as is 

possible with QSI-based models. However, due to their simultaneous and optimal 

estimation of parameters (allowing for variable interactions to be captured), forecasting 

superiority and (most importantly) ability to model complex itinerary substitution 

patterns (allowing for rapidly changing market conditions to be accurately modeled), the 

advantages of logit-based models far outweigh the disadvantages.

7.3 CONCLUSIONS

This dissertation details the development of aggregate air-travel itinerary share 

models. These models forecast the number of passengers expected to travel on each 

itinerary between any airport-pair (conditional on the forecasted airport-pair volume). As 

the first study to model aviation demand at the itinerary level, this work is an important 

step forward in aviation demand modeling.

The first goal of the dissertation was to understand the impact of different air- 

carrier service attributes on itinerary share. The models incorporated in the presented 

research contain independent variable specifications linking itinerary and airline 

characteristics to itinerary share. Explanatory variables used in this study such as level- 

of-service indicators differing by market type, connection quality variables, departure 

time variables, and equipment size and type variables have previously not been reported
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in the literature. Additionally, the presented logit-based models are shown to 

outperform a QSI-based model.

The second goal of the dissertation was to model the underlying competitive 

dynamic among air-travel itineraries. To accomplish this, increasingly complex 

generalized extreme value specifications (in particular, variations of the nested logit and 

ordered generalized extreme value models) are used. Some of these structures have never 

been used in the aviation demand literature and some are new to the logit share literature 

in general. These new models may be applicable to areas outside of aviation demand as 

well. The advanced models estimated in this dissertation have advantages over the more 

restrictive model structures and outperform these models with respect to forecasting 

accuracy, statistical tests and behavioral interpretations, leading to a clearer 

understanding of the air-travel itinerary competition dynamic.
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